
Ruhr-Universität Bochum

Institut für Experimentalphysik I

Application of Evolutionary Strategies

to Automated Parametric Optimization

Studies in Physics Research

Dissertation zur Erlangung des Grades
Doktor der Naturwissenschaften

am Institut für Experimentalphysik I
der Ruhr-Universität Bochum

Vorgelegt

von
Rüdiger Berlich

aus Wuppertal

Bochum, im November 2003

1. Gutachter: Dr. M. Kunze
2. Gutachter: Prof. Dr. H. Koch

Abstract

Conducting the analysis of particle physics events requires the processing of large amounts
of data. Imposing criteria such as a restriction of the allowed range of values (“cut”) on
kinematic variables allows to filter wanted from unwanted events. The result will usually be
a signal in a histogram (“peak”). A numerical figure of merit that is assigned to the peak,
such as its significance, can be treated as a direct function of the cuts. This makes particle
physics analyses accessible to automated parametric optimization techniques, where the
figure of merit is maximized by an appropriate variation of the cuts.

This thesis presents the application of Evolutionary Strategies, an efficient optimization
algorithm, to particle physics problems taken from the BABAR experiment. An addi-
tional usage pattern involving a Dalitz plot analysis is demonstrated using data from the
CB/ELSA experiment.

The “EVA” library, a new implementation of distributed Evolutionary Algorithms that was
developed as part of this thesis combines as one of the first implementations the ability to
perform the optimization in parallel, on devices ranging from single processor- over SMP-
machines all the way to clusters and the Grid, with an intuitive interface to a standard
tool in particle physics analysis – the ROOT framework.

vi

Contents

1 Introduction 1

1.1 Overview . 2

2 Physics Motivation and Definitions 5

2.1 Optimizing Cuts in Particle Physics Analysis 5

2.1.1 Quality measures . 6

2.2 Dalitz Plot Analysis . 11

3 Evolutionary Algorithms 15

3.1 Background . 15

3.2 Relevance . 16

3.3 Evolutionary Strategies . 17

3.3.1 Evolutionary Strategies and Gradient Descents 20

3.4 Genetic Algorithms . 21

3.5 Parallelization . 22

3.6 Evolutionary Algorithms and the Grid . 23

4 The EVA Library 25

4.1 Introduction . 25

4.2 Technical principles of parallel execution 26

4.2.1 Efficiency and Speedup . 26

4.2.2 Amdahl’s Law . 27

4.2.3 Synchronization . 27

4.2.4 Latency and Bandwidth . 28

viii CONTENTS

4.3 Library Design . 29

4.3.1 Objectives and Mission Statement 29

4.3.2 Design Criteria, Requirements and Characteristics 30

4.4 C++ classes of the EVA library . 31

4.4.1 The evaMember class . 31

4.4.2 Values . 33

4.4.3 The evaIndividual class . 36

4.4.4 The evaBit, evaBitAP and evaBitset classes 36

4.4.5 The evaPopulation class . 37

4.4.6 The evaPthreadPopulation and evaMPIPopulation classes 37

4.4.7 The evaError class . 38

4.5 Performance Measurements . 38

4.5.1 Number of members of a population 39

4.5.2 Two child individuals with multi-populations 39

4.5.3 Two child individuals with scalable time delay 41

4.5.4 MPI and the Grid . 41

4.5.5 Scaling . 43

4.5.6 Tracking an Evolutionary Strategy’s success 43

5 BABAR Data: Enhancement of Particle Signals 47

5.1 The BABAR Experiment . 47

5.1.1 The Asymmetric B-factory PEP-II 49

5.1.2 The BABAR detector system . 49

5.2 Parametric Optimization in the BABAR experiment 53

5.2.1 Selection of D+
s decays . 53

5.2.2 Reconstruction of D+
s mesons . 54

5.2.3 Optimizing the Squared Significance S2 using the
EVA library . 56

5.2.4 Sanity checks . 61

6 CB/ELSA Data: Dalitz Plot Analysis 65

6.1 The CB/ELSA experiment . 65

CONTENTS ix

6.1.1 The inner detector . 66

6.1.2 The Crystal Barrel Calorimeter . 67

6.1.3 TOF and Gamma Veto Detector 68

6.2 Analyzing the pπ0η final state at CB/ELSA 68

6.2.1 Achievements of the Optimization Procedure 73

6.3 Comparison with Standard Procedures . 74

7 Summary and Outlook 77

A Using the EVA library 79

A.1 Installation . 79

A.1.1 How to obtain EVA . 79

A.1.2 Requirements . 79

A.1.3 Compilation and Installation . 79

A.2 Documentation . 80

A.3 Usage . 80

A.3.1 Overview . 80

A.3.2 Searching the minimum of a parabola 81

A.3.3 Restricting the value range . 86

A.3.4 XML generation . 88

A.3.5 Loading and saving a population 91

A.3.6 Changing parameters of a population 92

A.3.7 Multi-populations . 94

A.3.8 Parallelizing populations . 94

A.3.9 Using different parallel personalities 96

A.3.10 Restrictions of the parallelization 97

A.4 Consistency Checks . 99

A.4.1 Random Numbers . 99

A.4.2 Generating random numbers with a gaussian Probability Density
Funtion (PDF) . 100

A.4.3 External vs. Internal representation of an evaDouble 101

A.4.4 Training Feed-forward Neural Networks 102

x CONTENTS

A.5 Interfacing the EVA library to ROOT and PAW 103

A.6 Copyright . 106

B Using Neural Networks to Optimize Significance 109

Chapter 1

Introduction

Computing has a long history, going back to the early fifties. But not until the late
seventies has it become common for particle physicists to use computers as a standard
means of analyzing their data. Early particle physics experiments dealt with only dozens or
hundreds of “events” to be analyzed, whereas advances in accelerator and detector design
and complete changes of paradigms have today led to an inflation of data production.
Where early particle physicists dealt with the analysis of single photographic plates or
photographs of decays monitored using a bubble chamber, doing particle physics today
has to do much more with statistical analysis, “filtering” out the desired event types from
possibly petabytes1 of data. Where the decay of a single pion could initially be observed
with photographic exposures, today “b-factories” (such as the BABAR experiment at the
Stanford Linear Accelerator Center) produce billions of bb̄ pairs2. The amount of data
that will be produced by the next generation of particle detectors has even enforced a new
computing paradigm – Grid computing: As it is no longer possible to store and process
all data locally, new techniques need to be developed that help to seamlessly integrate
distributed computing resources.

Numerous minimization or maximization tasks are implicitly already part of any standard
analysis in particle physics – be it the reconstruction of a charged track in a drift chamber
or the “fitting” of a mathematical function to a histogram. But some optimization tasks
require the processing of such a large amount of data that being able to perform this
computation in parallel on a set of, possibly globally distributed, compute nodes represents
a significant advantage. Two such examples are presented in this thesis - the optimization
of an analysis through the maximization of a figure of merit assigned to a particle signal,
using measured data from the BABAR experiment, and the minimization involved in doing
Dalitz plot analysis at the CB/ELSA experiment.

Part of this thesis comprises a new software library of Evolutionary Algorithms that, as
one of the first implementations, combines the ability to perform optimizations in parallel,

11 Petabyte = 106 Gigabyte
2being recorded with an electronic data acquisition (DAQ) system

2 Introduction

on devices ranging from multi-processor machines over cluster systems to the World Wide
Grid, with an intuitive interface to a standard tool of particle physics analysis – the ROOT
framework. The library is targeted at particle physicists with the need for long lasting,
computationally expensive optimization studies.

1.1 Overview

In order to offer a better understanding of the topics discussed in this thesis, a short
overview of the material presented in each chapter is given below :

� Chapter 2, Physics Motivation and Definitions, introduces two physics examples –
the optimization of particles in histograms and Dalitz plot analysis – that involve the
processing of very large amounts of data, thus making their optimization a daunting
task.

� Chapter 3, Evolutionary Algorithms, introduces Evolutionary Algorithms as a means
to perform generic minimization and maximization tasks.

� Chapter 4, The EVA Library, discusses the design and implementation of “EVA”,
a software library of parallel EVolutionary Algorithms. The design principles are
followed by a discussion of the most important classes of the library. The chapter
concludes with a number of performance measurements, most of them being taken
at the GridKa compute center of Forschungszentrum Karlsruhe.

� Chapter 5, BABAR Data: Enhancement of Particle Signals, discusses the applica-
tion of the EVA library’s implementation of Evolutionary Strategies to the optimiza-
tion of a set of cuts in the reconstruction of three decay modes of the D±

s in the
BABAR experiment. The chapter also includes a discussion of the creation of fake
peaks and introduces the BABAR experiment.

� Chapter 6, CB/ELSA Data: Dalitz Plot Analysis, discusses the application of the
EVA library’s implementation of Evolutionary Strategies to a Dalitz plot analysis done
by the CB/ELSA collaboration. The chapter furthermore includes a discussion of
the CB/ELSA detector system and quantitatively compares Evolutionary Strategies
with a gradient descent optimization method (TMinuit).

� Chapter 7, Summary and Outlook, provides a summary and conclusion of this work
and tries to highlight possible future developments.

� Appendix A, Using the EVA library, gives an overview of the EVA user interface,
using programming examples. In addition, the chapter highlights a few consistency
checks used to thoroughly test the EVA library.

1.1 Overview 3

� Appendix B, Using Neural Networks to Optimize Significance, discusses a new
method, that has the potential to combine the advantages of Feedforward Neural
Networks with parametric optimization studies in physics research. In particular,
this approach would be able to exploit correlations between cut variables.

4 Introduction

Chapter 2

Physics Motivation and Definitions

Throughout the history of doing physics with computers, minimization and maximization
techniques1 have become a mandatory component of every analysis. Simple examples are
the reconstruction of charged particles from data measured in drift chambers in particle
physics experiments or the “fitting” of a given mathematical function to a histogram.

Some optimization tasks, however, are on the verge of what can be realistically handled
by a single computer, be it because of a particularly large amount of data to be processed
or due to intrinsic difficulties of an analysis, such as noisy input or many local optima in
a figure of merit to be optimized. As a consequence, despite their potential usefulness for
and benefit to particle physics analysis, some optimization paths are rarely pursued.

This chapter discusses two particularly daunting physics examples – the optimization of
signals in particle physics histograms and doing Dalitz plot analysis.

Chapters 3 and 4 will then introduce a possible solution to this dilemma - Evolutionary
Algorithms and a distributed implementation thereof, which was developed as part of this
thesis. Chapters 5 and 6 will then discuss the application of these techniques to real data
taken at the BABAR and CB/ELSA experiments.

2.1 Optimizing Cuts in Particle Physics Analysis

Searching for a new particle or the reconstruction of a known particle means to first under-
stand its decay modes. As one usually only has data available for its decay products and
not for the particle itself, it can only be reconstructed using the data recorded for the final
state particles. This can also involve the reconstruction of intermediate decay products
that are then in turn used to reconstruct the original particle.

Many kinematic variables help to reduce the amount of unwanted “background” data

1or in short: “optimization” techniques

6 Physics Motivation and Definitions

and to increase the fraction of correctly reconstructed particles. For example, in a decay
1 → 2+3 of a particle 1 into particles 2 and 3, the two latter particles can only be produced
under a 180o angle in the rest frame of particle 1. The mass of particle 1 will put further
constraints on the energy available for the production of 2 and 3, and not all particle types
can be produced due to energy and momentum conservation as well as other conservation
laws.

Consequently it is possible to enhance the amount of wanted over unwanted data by the
application of restrictions (“cuts”) on – usually floating point – variables representing kine-
matic or otherwise important properties of the decay products. The result of a particle
physics analysis is usually a histogram, with a signal (“peak”) representing the recon-
structed particle and background data representing wrongly reconstructed events. A nu-
meric figure of merit assigned to the peak measures its quality. It can be interpreted as
a direct function of the cuts that were applied to the kinematic variables. This, in turn,
makes particle physics analysis accessible to automated parametric optimization techniques
that try to maximize the figure of merit by varying the cuts in an appropriate way. The
definition of the quality or figure of merit is up to each individual researcher. We will
present two common examples in the next section. Definitions needed to understand this
section are explained in figure 2.1.

It should be obvious that the automatic determination of optimal cuts is a desirable goal.
But at the same time checking the quality of a peak usually requires the processing of
potentially hundreds of thousands of recorded events from particle physics experiments.
Automated parametric optimization techniques usually require hundreds of different sets
of cuts to be checked for their quality, and each check triggers a new re-processing of the
event data. And so the required amount of computing power to perform such an analysis
is immense. In particular, a single computer is unsuitable for this task, both because of
memory constraints and due to a lack of computing power.

2.1.1 Quality measures

2.1.1.1 Significance S

A common task in particle physics is the measurement of decay rates, defined as DR = N
ε
,

or decay fractions, defined as BR = DR1

DR2
= N1ε2

N2ε1
. N is the number of decays of a particular

type that were found in an analysis, ε is their reconstruction efficiency.

Using the standard gaussian error propagation one can calculate the error on BR as

∆BR =

√

√

√

√

(

∂BR

∂N1

∆N1

)2

+

(

∂BR

∂N2

∆N2

)2

+

(

∂BR

∂ε1

∆ε1

)2

+

(

∂BR

∂ε2

∆ε2

)2

2.1 Optimizing Cuts in Particle Physics Analysis 7

1.88 1.9 1.92 1.94 1.96 1.98 2 2.02 2.04
0

500

1000

1500

2000

2500

3000

 entries,1B

 bins1b

 entries,2B

 bins1==b2b
12 b

0b
)2+B1=(B0B

 bins0entries, b

) entries in signal0N=(P-B

N

P entries in signal
and background

2GeV/c

signal
background

side band 1
side band 2

Figure 2.1: Definitions
for a particle signal
and background in a
histogram. The number
of entries N in a particle
signal can be calculated
with the help of the
number of background
events B0 below the
peak. An estimate for B0

can be calculated from
the number of entries
in the sidebands, if the
background is flat.

=

√

√

√

√

(

ε2∆N1

ε1N2

)2

+

(

ε2N1∆N2

ε1N2
2

)2

+

(

N1ε2∆ε1

N2ε2
1

)2

+
(

N1∆ε2

N2ε1

)2

=

√

√

√

√

(

ε2N1

ε1N2

∆N1

N1

)2

+
(

ε2N1

ε1N2

∆N2

N2

)2

+
(

ε2N1

ε1N2

∆ε1

ε1

)2

+
(

ε2N1

ε1N2

∆ε2

ε2

)2

=
ε2

ε1

N1

N2

√

√

√

√

(

∆N1

N1

)2

+
(

∆N2

N2

)2

+
(

∆ε1

ε1

)2

+
(

∆ε2

ε2

)2

With the definition of S := N
∆N

, henceforth called “significance”, and E := ε
∆ε

one can
conclude that

∆BR =
ε2

ε1

N1

N2

√

(

1

S1

)2

+
(

1

S2

)2

+
(

1

E1

)2

+
(

1

E2

)2

(2.1)

Obviously it is possible to minimize the error ∆BR by maximizing the significances S1 and
S2. It is thereforece necessary to take a closer look at the error ∆N in S = N

∆N
.

It is assumed that the background B0 below a signal in a histogram is calculated using
the number of entries in the sidebands. Please note that in order to achieve satisfactory
results using this method, it is necessary for the background to be flat.

Using the definitions made in picture 2.1, one can conclude that the error on
N = P −

(

b0
2b1

)

(B1 +B2) is

∆N =

√

√

√

√

(

∂N

∂P
∆P

)2

+

(

∂N

∂B1

∆B1

)2

+

(

∂N

∂B2

∆B2

)2

+ correl.term

8 Physics Motivation and Definitions

=

√

√

√

√

(√
P
)2

+

(

b0
2b1

√

B1

)2

+

(

b0
2b1

√

B2

)2

+ correl.term

or, when simplifying this expression,

∆N =

√

√

√

√P +

(

b0
2b1

)2

(B1 +B2) + correl.term (2.2)

The number of entries in the two sidebands, B1 and B2, will be low if the background B0

below the peak is low, and vice versa. This means that the number of histogram entries
P = N + B0 in the peak region is correlated to the number of entries in the side bands.
Thus a correlation term must be added to the error-contributions of the side band-entries
in equation 2.2.

As B0 = b0
2b1

(B1 +B2) (see figure 2.1) and P = N + B0, equation 2.2 can also be written
as

∆N =

√

√

√

√N +

(

1 +
b0
2b1

)

B0 + correl.term (2.3)

As it is the purpose of this thesis to demonstrate the effects of parametric optimization in
particle physics experiments rather than to perform an entire analysis, a simplified version
of equation 2.3 will be used in the following to calculate the significance, neglecting the
correlation term, but taking into account the statistical error on the side bands. They are
assumed to be of the same size as the peak region : b0 = 2b1.

The significance S can then be written as

S =
N√

N + 2B0

(2.4)

A real-life analysis would have to calculate the background from Monte Carlo data, ignoring
the side bands. This method eliminates the correlation between the alleged number of
background events and the number of entries in the peak. If BMC is the number of Monte
Carlo events assigned to the background, the significance would become

SMC =
N√

P +BMC

(2.5)

in this case. No systematic errors have been taken into account.

If BMC ≈ B0, then, due to P = B0 + N , equation 2.5 will in fact assume very similar
values to equation 2.4. Neglecting the correlation term in equation 2.2 and assuming that
b0 = 2b1 will thus yield realistic results, and equation 2.4 will be used in the following as

2.1 Optimizing Cuts in Particle Physics Analysis 9

the basis for a figure of merit to be optimized. But as the calculation of a square root is
computationally expensive, the “dilution” D = S2 will be used instead of S :

D = S2 =
N2

(N + 2B0)
(2.6)

As a side note, another common figure of merit for the quality of a peak used for example
by the BABAR collaboration is simply

D̂ =
N2

N +B0

(2.7)

This is the form that equation 2.6 would have in the case of very large sidebands (2b1 � b0
– please also compare the definition of ∆N in equation 2.3).

An important feature of the significance S, when being used as a quality measure, is that
it is not always easy to see whether a peak has a high quality or not. It is necessary to
calculate the significance in order to find out about the quality of a peak. As an example,
increasing the number of background entries B0 by a factor of 2, while increasing the
number of signal entries N by a factor of 1.5, can still lead to an increased significance,
although the new histogram might “look” worse than the first one. E.g., if B0 = 1000 and
N = 200, then

(1.5 ∗N)2

1.5 ∗N + 2 ∗ 2B0
= 20.93 >

N2

N + 2B0
= 18.18 (2.8)

This is unlike the signal-to-noise ration Rsn being discussed in the next section and makes
the maximization of S an outstanding candidate for automated parametric optimization
techniques.

The application of parametric optimization techniques to the maximization of S2 will be
discussed in chapter 5 on the example of reconstruction of three decay modes of the Ds,
using data measured at the BABAR experiment.

2.1.1.2 Signal/Background Rsn

A more naive measure for the quality of a peak in a histogram is the signal-to-noise ratio
Rsn = N

B0
. It is immediately clear that a large number of entries N in a peak with a low

number of background events B0 will yield better results in an analysis than a low N with
a high B0. The implicit assumption in this statement, however, the expectation to have
enough entries in the peak to actually perform such an analysis, can prove to be wrong.

As it is possible to maximize Rsn by minimizing the number of background events, an
algorithm using Rsn as a quality measure will tend to enforce very tight cuts, indeed

10 Physics Motivation and Definitions

0B
NSignal/Background

1 1.5 2 2.5 3 3.5

0
N

+
2
B2

N
 ≈

2
S

ig
n

if
ic

a
n

c
e

0

500

1000

1500

2000

2500

3000

3500

4000

Lines of equal N

In
c
re

a
s
in

g
 N

Start value

Best solution found in one turn of the optimization

Best overall solution

)snOptimization of Signal/Background Ratio (R
Figure 2.2: Squared Sig-
nificance vs. Signal-to-
noise ratio “Rsn” during
an optimization with Rsn

as a measure of the qual-
ity of a Ds peak. The
small triangles stand for
each solution that was in-
vestigated. Maximizing
Rsn leads to signals with
a small number of en-
tries and low significance
(see text). Rsn can thus
not be considered to be a
suitable quality measure
in parametric optimiza-
tion studies.

resulting in a low B0, but also in an insufficient N . Figure 2.2 shows different solutions
on the example of the decay Ds → Φπ, taken from data in the BABAR experiment2, with
Rsn being used as a figure of merit in an “optimization” run. The squared significance
S2 = N2

N+2B0
is plotted against Rsn. For the understanding of the plot it is important to

know that, in the S2 − Rsn plane, equal values of the number of entries N in the peak
can be represented as lines. The small black triangles stand for each solution that was
investigated in the optimization process. The evaluation is done in turns, and the larger
stars represent the best solution found in each turn of the optimization.

It is obvious in figure 2.2 that, while an almost fourfold improvement of Rsn could be
achieved for the “best” solution3 (labelled “Best overall solution” in the plot), this “op-
timization” leads to a very low N . Similarly the resulting S2 of the Ds peak approaches
0. The best solution found leads to a peak with just 50 entries, compared to about 9500
when the optimization started. Hence it can be concluded that Rsn is not a good measure
of the quality of a peak when doing parametric optimizations.

The large number of entries in figure 2.2 once again underlines the fact that the large
amount of data to be processed makes the optimization of particle signals unsuitable to
stand-alone computers. Parallelisation of optimization toolkits is a possible workaround.
Each of the entries in figure 2.2 represents the evaluation of a set of cuts, with 20 inde-
pendent sets being checked in each turn of the optimization. This means that a sequential
optimization would take much longer than a parallel optimization procedure that can in-
vestigate each set simultaneously on a different computer.

2This decay mode will be discussed in more detail in chapter 5.
3Best according to the value of Rsn

2.2 Dalitz Plot Analysis 11

1

2

3

1 2 3

Figure 2.3: A Dalitz plot represent-
ing the decay pp̄ → π0π0η. The plot
uses measured data from the Crystal
Barrel experiment at LEAR/CERN,
a predecessor of the CB/ELSA ex-
periment being discussed in chap-
ter 6. Due to energy- and momen-
tum conservation not all areas of
the plot are populated with events.
Clear structures in the Dalitz plot
indicate the presence of resonances.
They are labelled in the plot. See
the text for further information on
Dalitz plots. (Courtesy Spanier /
Meyer [SPAN98]).

2.2 Dalitz Plot Analysis

Another example for parametric optimization problems involving very long computations
is the minimization procedure done as part of a Dalitz plot analysis.

In particle decays, all essential kinematical variables of a three-body final state can be
described by just two independent variables. This feature is used in Dalitz plots, first
introduced by R.H. Dalitz in 1953.

If, in a reaction
1 + 2 → 3 + 4 + 5 (2.9)

m34 is the squared invariant mass of particles 3 and 4 and m45 the one of particles 4 and
5, then, for a given incident energy, the third squared invariant mass is fully determined
by the other two, as

m2
35 +m2

34 +m2
45 = m2

12 +m2
3 +m2

4 +m2
5 = const (2.10)

Thus, in the most common form of the Dalitz plot, for a given set of decays (“events”)
with fixed center of mass Energy Ecms, the squared invariant masses of two of the three
particle combinations are plotted against each other into a two-dimensional histogram4.

Due to energy- and momentum-conservation, the non-void area of a Dalitz plot is confined
to a well-defined region which, in the absence of interferences or resonances between the

4For practical reasons one has to allow Ecms to vary within a small range in order to have a sufficient
number of events in an analysis. This will lead to structures in a Dalitz plot being smeared. This will
happen the more the broader the energy range being used is.

12 Physics Motivation and Definitions

final state particles can be shown to be uniformly populated5. Structures, such as bands,
will be observed if there is resonant behavior between each two of the three final state
particles.

An example of a Dalitz plot can be found in figure 2.3. Several hundred thousand of events
of the type pp̄ → π0π0η, measured at the CB/LEAR experiment (a predecessor of the
CB/ELSA experiment discussed in chapter 6), were used to produce this plot. m2(π0η) is
plotted against m2(π0η). The structures in the plot are clearly visible, the resonances are
labelled with their corresponding particles.

Information taken from the analysis of these structures can be used to determine parameters
such as the masses, widths or quantum numbers of the resonances the final-state particles
have originated from6. The most common way of extracting this information is through a
Dalitz plot analysis, a special form of a partial wave analysis (“PWA”).

Only the principal procedure can described here, as a detailed description of the theory
behind Dalitz plot analyses goes beyond the scope of this work. A thorough description,
however, can be found in [LUED95].

In the simplified framework of the canonical formalism, weights are assigned to phase-
space distributed MC events, which are then filled into a two-dimensional histogram7.
Each weight is a function of the parameters that should be extracted from the Dalitz plot,
such as masses or widths of particles or their relative contributions. The weight is adapted
by varying these parameters, until the Dalitz plot for phase-space distributed Monte Carlo
events is transformed into the corresponding plot for data events.

The figure of merit in this case is often simply a χ2 representing the degree of deviation of
the weighed MC Dalitz plot from the one using measured data.

A Dalitz plot analysis hence requires the minimization of a function with a large amount
of free parameters (“fitting”) and thus is itself a high-dimensional minimization problem.

Once the fit has converged, the free parameters of the weights, adapted by a minimization
algorithm, reflect the situation present in the physical data.

As in the case of the optimization of particle signals in histograms, the minimization
process has to cope with a large amount of data. The reason for this is that the weights
are calculated on the basis of individual Monte Carlo events. It is not uncommon to require
a 5-10 times larger Monte Carlo dataset than measured data is available, as a measurement
should not be dominated by the statistical error of the Monte Carlo data.

An additional complication lies in the fact that optimization algorithms that are susceptible
to getting stuck in local optima might have difficulties dealing with noisy input data, so
choosing the right optimization tool is important.

5Please note that acceptance effects of the detector will lead to a deviation from a pure phase space
distribution of entries

6The original publication can be found at [DAL53], [BOCK98] gives a short overview of Dalitz plots.
7representing a Dalitz plot

2.2 Dalitz Plot Analysis 13

We will discuss the application of Evolutionary Strategies, an efficient optimization al-
gorithm, to a Dalitz plot analysis done at the CB/ELSA experiment in chapter 6. The
chapter also contains a comparison with a more standard algorithm based on a gradient
descent (“Minuit”).

14 Physics Motivation and Definitions

Chapter 3

Evolutionary Algorithms

Just like many conventional methods, Evolutionary Algorithms provide a means of finding
optimal solutions to multidimensional, numerical or discrete problems.

Many different variants of Evolutionary Algorithms are known, including Classifier Systems
and Genetic Programming. They share a similarity to the principles of biological evolution,
which by itself forms an optimization scheme. [EAFAQ] provides a good overview of the
Evolutionary Algorithms known to date.

However, the most well known examples of this family of optimization tools are Evolution-
ary Strategies and Genetic Algorithms. The current chapter is exclusively dedicated to
these two methods. The term “Evolutionary Algorithm” in this chapter henceforth shall
denote only these two optimization schemes.

Evolutionary Strategies will be used in chapters 5 and 6 for the optimization of two com-
putationally challenging physics examples.

3.1 Background

Evolutionary Strategies and Genetic Algorithms share many features, including a similar
history, and a long lasting dispute among their inventors.

Having been developed in the mid sixties, at a time, when detailed, computer-based opti-
mization studies were still uncommon, early development of Evolutionary Strategies seems
to have been inspired more by the wish for direct practical application than by the attempt
to emulate natural processes as closely as possible. Dr. Ingo Rechenberg, an engineer by
profession, first published his method in his book Evolutionsstrategie [RECH73] in 1973.
While it was subsequently refined by many other scientists, most notably Paul Schwefel,
most of the core principles of the method still remain. An update to [RECH73] was pub-
lished in 94 by Ingo Rechenberg [RECH94]. Early work included the optimization of fluid
flow in a pipe or the improvement of supersonic jet engines. Work on both topics was done

16 Evolutionary Algorithms

using mechanical models rather than computers. Dr. Ingo Rechenberg today teaches at
Technische Universität Berlin.

Genetic Algorithms were initiated by John Holland. Just like Evolutionary Strategies,
their development commenced in the mid-sixties. Unlike Rechenberg, however, Holland’s
primary interest was in a close replication of natural processes and in the computer science
aspects of his method [SCHO93]. He focused on the question, how nature, using only
the rather simple genetic code, could create something as astonishing as intelligence, self
organization and the most complex adaptation patterns. It should be noted that Holland
didn’t neglect the possibility of practical application of his research, especially with respect
to optimization studies. A detailed description of Holland’s work and the underlying
principles was published by John Holland in 1975[HOLL75].

3.2 Relevance

“Automation” often means finding the optimal way to accomplish certain tasks. Here the
term “optimal” is fuzzy, but almost always involves rating one possible solution over an-
other. A scientific approach would assign values to solutions of sub-criteria of a problem
and judge the overall solution according to some amalgamation of these values. Varying
some of the “sub-solutions” might then lead to a better result. In other words, finding
the optimal solution to an arbitrary problem implicitly resembles the procedure deployed
by computerized optimization methods, and automation of problem-solving can often be
expressed as the minimization or maximization of a numerical fitness or quality of a solu-
tion, depending on a variation of the sub-solutions of a problem. A world that increasingly
tries to automate many of every day’s tasks therefore relies on computerized optimization
techniques.

Whether Evolutionary Algorithms are a suitable method for a given task obviously de-
pends on the task itself. Sometimes, more standard optimization schemes, like a simple
gradient descent (see e.g. 3.3.1), are able to provide solutions faster, if not better. But
thanks to their easy parallelisability, Evolutionary Algorithms increasingly provide a more
suitable, often superior alternative to standard methods. In some cases, like for example
problems with many local optima or extremely noisy input data, Evolutionary Algorithms
outperform all of their competitors. Much more than still a few years ago, when most
computation was done on single processor machines or expensive multi processor systems,
the current trend to large compute clusters and the rise of a new computing paradigm,
called Grid computing (see e.g. section 3.6), gives new life to an approach that started
more as a Gedankenexperiment than a method designed to solve even the most complicated
optimization problems.

3.3 Evolutionary Strategies 17

P1

P2

C1'

C2'

C3'

C4'

C5'

P1

P2

C1'

C2'

C3'

C4'

C5'

P1

P2

C1

C2

C3

C4

C5

P1

P2

C1

C2

C3

C4

C5

Duplicate/
Recombine

Mutation Select, i.e. sort
children

a) Evolution scheme - select new parents from old parents
 and chi ldren : Quali ty only increases or stays constant

b) Evolution scheme - select new parents from chi ldren only :
 Quali ty can decrease

Parents

Children

Parents

Children

P1

P2

P1

P1

P1+P2

P2

P1

P1

P1+P2

P2

P1

P1

P2

P1

C2'

Duplicate/
Recombine

Mutation Select, i.e. sort
children

P1'

P2'

C1'

C2'

C3'

C4'

C5'

C2'

P1'

P2'

C1'

C2'

C3'

C4'

C5'

C2'

Figure 3.1: Schematic
overview of Evolutionary
Algorithms. The dupli-
cation of parent individ-
uals, possibly including
a recombination of two
or more parents (example
“P1+P2”), is followed by
the mutation of child in-
dividuals and the selec-
tion of the best individ-
ual(s) as new parent(s).
This procedure forms the
basis of both Evolution-
ary Strategies and Ge-
netic Algorithms.

3.3 Evolutionary Strategies

It is the purpose of this chapter to provide an introduction to the basic principles of
Evolutionary Algorithms. Since Evolutionary Strategies form the basis of the parametric
optimization techniques discussed in this thesis (see chapters 5 and 6), we will start with a
discussion of their functionality and inner workings. New terminology will be introduced
along the way.

At the heart of an Evolutionary Strategy (henceforth also called ES) is a population of
structures, called individuals . In the case of the C or C++ programming language these
structure could be implemented using a struct or a class.

Each individual contains a user-defined set of floating point variables, whose meaning is
defined by an evaluation function common to all individuals. A simple example would be
an individual containing two floating point variables x and y, that are associated with the
evaluation function f(x, y) = x2 + y2, i.e. a two-dimensional parabola. In our example the
task is to find the set of x and y parameters, that leads to a minimal value of f(x, y), i.e.
x = 0 and y = 0.

It is the purpose of an evaluation function to assign one floating point number to an
individual, equivalent to its quality or fitness, such that one individual can be rated as
being better than another, or, in other words, having a better fitness. In many cases this
means finding the parameter set yielding a minimum value of the evaluation function rather

18 Evolutionary Algorithms

Figure 3.2: In the context of Evo-
lutionary Algorithms an individual
is represented by a “feature” vec-
tor. In the case of Evolutionary
Strategies this vector contains float-
ing point values. Individuals being
used in a Genetic Algorithm contain
bits. The content of part of each fea-
ture vector is exchanged in a cross-
over procedure between two individ-
uals. Cross-over is more common in
Genetic Algorithms, but can also be
used in Evolutionary Strategies.

than its maximum, i.e., in some cases a low value of the evaluation function can denote a
high fitness.

Often a set of user-defined data is assigned to each individual. In the most common case
this data remains constant throughout the optimization process, but one could also think
of a time-dependant stream of data.

A population can be understood as a collection of a (usually constant) number of individ-
uals. Among them one can distinguish between one or more parent individuals and a set
of child individuals. Within a population, individuals undergo a cycle of recombination or
duplication (that is : the creation of new children from parents), mutation (i.e. modifica-
tion of the children according to a user defined scheme) and selection according to their
fitness, again specified by the user. Picture 3.1 shows this process in detail.

In a first step, new children are created from a set of parent individuals1. This can in-
volve the simple duplication of randomly selected parents or more sophisticated “sexual”
recombination schemes using two or more parents as the basis for a new child individual.
Picture 3.2 explains one of the most common sexual recombination schemes, the “cross
over” of two parent individuals. In any case children inherit some of the characteristics of
their parents.

In the second step, each child individually undergoes a mutation process. The most com-
mon mutation scheme in Evolutionary Strategies involves adding a random number with a
gaussian2 probability density function (PDF)3 to each floating point variable of an individ-

1They are still labelled as “P” in figure 3.1 in order to reflect the fact that, at this point, they are still
exact copies of one parent individual or a combination of the characteristics of two or more parents

2Centered around 0.
3Henceforth this is called a “gaussian random number”

3.3 Evolutionary Strategies 19

Figure 3.3: A basic form of Evolu-
tionary Strategies can be demon-
strated on the example of a two-
dimensional parabola. “Children”
are scattered around a parent in-
dividual. The density of child in-
dividuals increases with decreas-
ing distance to the parent. The
best child of a generation is cho-
sen according to its fitness (i.e.
the function value of the parabola
at the location of the child) and
becomes a new parent. The pro-
cedure starts again.

ual. This means that, with a high likelihood, a child that was created as an exact replica
of one parent will, within the scope of the evaluation function, yield a similar result to its
parent, since the floating point variables it is built from have values close to those of its
parent. But it is the gaussian random numbers that help Evolutionary Strategies achieve
better results for evaluation functions with many local optima than a simple gradient de-
scent. While the latter tends to get stuck in a local optimum (although some techniques
exist that try to circumvent that problem), an Evolutionary Strategy will, after a while,
“jump” over such a dip in hyperspace. This is just a consequence of the fact that with a
low probability a gaussian random number with a mean value of 0 can also have a very
large value, leading to an individual “far” from its parent, beyond the reach of a local
optimum.

In the final step the individuals of a population are sorted according to their fitness. In the
most common case, both children and parents participate in the sorting, meaning that, if
none of the children has a better fitness than their parents, these parents “survive”. The
best individuals of a population then become parents of the next generation. Alternatively,
new parents can be selected from a population’s children only. In contrast to the first case
this means that the quality of the best individual can decrease whereas, if new parents
are selected from the whole population, this quality stays constant in the worst case. The
advantage of the second method is that a wider range of the input space is tested for
its quality. Experience shows that, especially for computationally expensive evaluation
functions, the first possibility is more suitable.

Picture 3.3 illustrates the whole process on the example of a two dimensional parabola,
with one parent individual and 15 child individuals per generation. Children are scattered

20 Evolutionary Algorithms

around the parent, with - as a result of adding gaussian random numbers - more children
being in the close proximity of the parent than far away. The best individual of a generation
is then selected and becomes the parent of a new generation, at which point the algorithm
starts from the beginning.

3.3.1 Evolutionary Strategies and Gradient Descents

A gradient descent can be used to search for minima (or maxima) of multi-dimensional
functions, just like Evolutionary Strategies. The basic procedure involves the calculation of
the gradient in a given point of an evaluation function, thereby determining the direction of
the steepest descent. A “step” is then made in that direction by varying the free parameters
of a function accordingly. A gradient descent involves the numerical or symbolic calculation
of the partial derivatives of a function for each variable. Information about theory and
practice of gradient descent can be found in [BRANDT92].

While the algorithm is well suited to many function types, it has a deficiency in that it
tends to get stuck in local optima. This is easy to understand, as a gradient descent can
only “walk” down-hill. If it is caught in a local optimum wider than the step width of
the algorithm, no further progress is possible. This problem can, to a limited extent, be
overcome by varying the step-width dynamically during the optimization, but practice
shows that a gradient descent is still susceptible to this problem.

The most common implementation of a gradient descent used in particle physics is Minuit,
part of the CERN computing library. A more modern implementation – TMinuit – can be
found in the ROOT framework ([ROOT]).

At this point one might have gotten the impression that Evolutionary Strategies do not
add too many new features to what a gradient descent does. Indeed an ES with a single
parent shares many of its inner workings with this algorithm. However, there are various
characteristics that make an Evolutionary Strategy unique. First and foremost, ES has the
ability to follow various concurrent optimization paths, should the user choose to run the
algorithm with more than one parent individual4. This makes this approach more robust
with respect to local optima and, if all optimization paths in the algorithm actually lead
to the same optimum, provides some reassurance that the values found actually belong
to the global optimum rather than local ones. An Evoltionary Strategy “scatters” child
individuals around the parents, with more children located close to a parent than far away.
But, with a lower probability, child individuals can reach even very remote spots. This also
makes Evolutionary Strategies robust against getting stuck in local optima. A remarkable
example, the minimization of the function f(~r) = (cos(|~r|2) + 2)|~r|2 is shown in section
4.5.6. The gradient descent implemented in TMinuit can’t cope with this function and
gets stuck in the very first local minimum it finds.

4Unlike biological evolution, Evolutionary Strategies do not require more than one parent individual to
be present.

3.4 Genetic Algorithms 21

In Evolutionary Strategies, children can share parameters of more than one parent, thus
giving them the ability to combine characteristics of a multitude of individuals. A nice
feature of ES is that the evaluation function used to judge one individual over another
makes no requirement whatsoever about the input space. It may be non-continuous or could
include singularities. A significant speedup over a gradient descent can be achieved by the
easy parallelisability of Evolutionary Strategies, discussed in section 3.5 (see also section
4.4.6). This is especially true if the evaluation function consumes significant amounts of
compute time, as is often the case especially in particle physics.

So, while both algorithms might, at first sight, share many similarities, they are indeed
very different.

In practice it is always possible to find functions that one algorithm can’t cope with but the
other does. For example, when minimizing a 100-dimensional parabola, a gradient descent
will out-perform an Evolutionary Strategy by a large factor. But as soon as there are many
local optima, an Evolutionary Strategy is much more likely to succeed. Similarly, the easy
parallelisability will give ES an advantage when dealing with computationaly expensive
functions to be optimized.

Section 6.3 compares gradient descents and Evolutionary Strategies using a physics exam-
ple.

3.4 Genetic Algorithms

We will now shortly discuss Genetic Algorithms, as the EVA library (it is discussed in the
next chapter) also implements parts of this algorithm.

Just like Evolutionary Strategies, Genetic Algorithms (“GA”) follow the procedure ex-
plained in picture 3.1. In contrast to them, however, GA-individuals consist of a vector
of bit values rather than floating point numbers. They are therefore more suited to dis-
crete optimization problems, such as combinatoric, high multiplicity searches (e.g. “find
the combination of charged tracks in a particle physics experiment that yield the best fit
result”). Numerical problems are also accessible to GAs, by simply using the bit repre-
sentation of a floating point value as a (64-)bit vector5. One should note, though, that
the most common mutation in GAs, the flipping of a bit value (e.g. “true → false”) may
involve a large change in the value of a numerical variable assembled from the bits. Imag-
ine changing the uppermost bit of the exponent. While there are ways to circumvent this
problem, Evolutionary Strategies do not exhibit this problem at all, so there are only few
areas where using GAs in numerical problems is a good choice. They do excel in other
areas, though.

Much more often than in the case of Evolutionary Strategies, GAs use sexual recombination
schemes to generate new children. The most common scheme is the cross over of two

5in the case of a “double” value

22 Evolutionary Algorithms

parents explained in Picture 3.2. Like in the case of the bit-flip, crossing over two bit
vectors representing floating point variables will lead to a large change in their value.

There are also problems that involve both numerical and discrete aspects. E.g. one might
ask for the street layout (one-way streets, traffic lights, etc.) that maximizes traffic flow in a
city. In this example each possible solution may involve adding or removing (discrete) traffic
lights at intersections. The numerical aspect here would be the duration and frequency of
the green light phase of each traffic light.

3.5 Parallelization

Parallelizing an application means identifying those parts of a program that can be executed
in parallel without creating an overhead that destroys any possible gain in processing
time. The need for synchronization is the single most important aspect that can make
parallelizing a program infeasible. Whenever a parallel thread of execution6 needs to
exchange data with another thread, both have to synchronize. Usually this means that
one of them has to wait until the other reaches the synchronization point. A similar problem
applies to the concurrent usage of resources that do not allow simultaneous access. An
important example is the write access to global variables of a program. One thread of
execution needs to hold a lock to the resource such that the other cannot access it while it
is still being used. Acquiring and releasing this lock consumes compute time, furthermore
the other thread of execution might have to remain idle until the first one releases the lock.
All this will slow down the program flow. In extreme cases, a serial version of a program
can then be several times faster than the parallel version.

In Evolutionary Algorithms, the duplication or recombination of parents may involve com-
munication between individuals, if a “sexual” recombination scheme is being used. Selec-
tion of the best individual of a generation again requires a comparison of their fitness. As
a consequence, both parts of the algorithm are not easily accessible to parallelization. Mu-
tation of child individuals and the subsequent calculation of their fitness, however, usually
does not involve the need for communication between them. This part of the algorithm
is thus an outstanding candidate for parallelization. The implementation of parallel Evo-
lutionary Algorithms presented in this thesis is thus targeted at problems, in which the
fitness calculation for each individual is computationally expensive. Naturally, the speedup
of parallel execution is the higher the longer the parallel part of the execution is compared
to the sequential part. Fortunately, most problems in particle physics require processing
of large datasets in order to determine the value of an individual and will therefore benefit
from an implementation of parallel Evolutionary Algorithms.

Our approach to parallelization is discussed in more detail in chapter 4. Further, more

6Here the term “thread of execution” means “parallel part of a program” and is not limited to a specific
thread implementation such as POSIX threads. The remarks also apply to programs using the Message
Passing Interface (“MPI”)

3.6 Evolutionary Algorithms and the Grid 23

general information about distributed and parallel computing can also be found in chapter
4.2.

3.6 Evolutionary Algorithms and the Grid

It is the duty of a middleware to provide the usual functionality available in Grid environ-
ments. A middleware is a software layer arbitrating between the Grid and user-applications.
On top of the middleware lie implementations of software libraries providing standardized
APIs7 for distributed computation. One of the most well known examples of such a li-
brary is MPICH-G2, an implementation of the MPI Message Passing Interface (see also
[MPICH-G2]). As it is not the API that has to adapt to a Grid environment but the
underlying implementation, there is in principle no difference in executing a parallel MPI
program over the Grid compared to the execution on a local compute cluster. However,
one has to take into account the significantly higher latency (see section 4.2.4) involved
in transferring data over long distance connections, and higher requirements for error-
recovery procedures apply, as one has less control over the availability and stability of
remote resources.

7API=Application Programming Interface

24 Evolutionary Algorithms

Chapter 4

The EVA Library

This chapter discusses the design and implementation of “EVA”, a software library of
parallel EVolutionary Algorithms. The design principles are followed by an in-depth
discussion of the most important classes of the library. The chapter is concluded by a
number of performance measurements, most of them being taken at the GridKa compute
center of Forschungszentrum Karlsruhe. The EVA library is a tool that aims at solving the
problems associated with the optimization of computationally expensive physics problems
The software was developed as part of this thesis. Section A.3 in the appendix is meant to
complement this chapter by giving an overview of EVA’s user-interface, using programming
examples.

4.1 Introduction

The EVA library implements common features of Evolutionary Strategies (“ES”, see 3.3)
and Genetic Algorithms (“GA”, see 3.4)1. An implementation of both GA and ES is built
on top of this code base.

The design focus was on long lasting, computationally expensive optimization studies.
The main design goals included ease of use, transparent parallelizability and extensibility.
While being designed with the needs of the particle physics community in mind, the library
should be general enough to allow a broader audience to benefit from its features.

This introduction to the EVA library assumes prior knowledge of the inner workings of
Evolutionary Algorithms, as discussed in [EAFAQ], [HOLL75], [RECH94] and [SCHO93].
Chapter 3 also gives an overview of this topic.

1GA and ES are commonly referred to as “EVolutionary Algorithms” or short “EA” in this thesis.
This term is also the origin of the name of this software library, EVA

26 The EVA Library

Target Group

Particle physics experiments today show the need to process large amounts of data. The up-
coming LHC experiments at CERN/Geneva, as an example, will produce several petabytes2

of “event” data3 per year as of 2007. The BABAR experiment at SLAC / Stanford, in con-
trast, is already taking data and faces similar, albeit smaller scale, challenges.

In this environment numerous optimization tasks have to be performed that involve re-
processing large amounts of data in an iterative procedure. One example are parametric
optimizations in particle physics analysis (see e.g. section 5.2). Processing such a data set
can involve several hours or even days of computation. Checking several parameter sets can
thus often be done simultaneously on several machines, if the computational requirements
are available. First and foremost this means that a suitable program library capable of
doing parallel computation must exist. The main target group of the EVA library are
therefore scientists and commercial ventures with a need for long lasting, computationally
expensive optimization studies.

4.2 Technical principles of parallel execution

In order to allow for a better understanding of EVA’s classes introduced below and to help
understand the performance measurements presented at the end of this chapter, a number
of general principles governing parallel execution of computer programs are discussed below,
starting with the definition of two variables measuring how effective the parallelization of
a program has been.

4.2.1 Efficiency and Speedup

If p is the number of processes and n the “input size”4, then the speedup of a parallel
program can be defined as the ratio of the runtime of a sequential solution (Tσ(n)) to the
runtime of the corresponding parallel implementation (Tπ(n, p)) :

S(n, p) =
Tσ(n)

Tπ(n, p)
(4.1)

An alternative to speedup is the efficiency, defined by

E(n, p) =
S(n, p)

p
=

Tσ(n)

pTπ(n, p)
(4.2)

21 Petabyte = 1000 Terabyte = 106 Gigabyte
3An “event” being the recorded results of the collision of two elementary particles
4A quantity representing the amount of input, e.g. the amount of numbers to be sorted or the number

of individuals in an Evolutionary Algorithm

4.2 Technical principles of parallel execution 27

As 0 < S(n, p) ≤ p, efficiency can reach a maximum of 1 : 0 < E(n, p) ≤ 1. An efficiency
of 1 represents a linear speedup while in the case of E(n, p) < 1/p the program is slower
than the sequential solution.

In order to optimize the speedup of a parallel solution, one should note that for parallel
execution Tπ(n, p) = Tcalc(n, p)+Ti/o(n, p)+Tcomm(n, p), where Tcalc is the computing time
needed, Ti/o is the time needed for input and output and Tcomm is the time needed for
communication (i.e. networking). The latter depends on the latency and bandwidth of a
network. So altogether one can say that

S(n, p) =
Tσ,calc(n) + Tσ,i/o(n)

Tπ,calc(n, p) + Tπ,i/o(n, p) + Tπ,comm(n, p)
(4.3)

It becomes immediately clear that, if Tcalc := Tσ,calc(n) ∼= Tπ,calc(n, p) and Ti/o := Tσ,i/o(n) ∼=
Tπ,i/o(n, p), then one will only achieve a satisfactory speedup if Tcalc + Ti/o � Tπ,comm.

This calculation does not yet take into account the need for synchronization (see section
4.2.3) between sub-processes, which leads to a further delay, decreasing the speedup.

4.2.2 Amdahl’s Law

An upper limit to the speedup is commonly calculated using Amdahl’s law. If F is the
fraction of a calculation that is sequential, and (1 − F) the fraction that can be split into
P parallel code sequences (and each is executed on different computing devices), then the
maximum speedup that can be achieved is

Smax =
1

F + 1−F
P

(4.4)

Consequently, if P tends to infinity, the maximum speedup becomes 1
F
. Consequently,

if 20% of the code is sequential and the number of parallel execution units is sufficiently
large, then the maximum speedup is 5.

4.2.3 Synchronization

One of the biggest problems of parallel computing is the need to synchronize parallel entities
of a program running on a cluster or as threads on multiple processors of a local machine.
The problem will be discussed using the example of a multi-threaded application, although
the problems are the same for MPI5 and PVM6 programs.

5The Message Passing Interface (MPI) is the most common way of exchanging information and data
between the different client entities and the server of a parallel program running on a cluster of compute
nodes.

6The Parallel Virtual Machine (PVM) is a library of functions similar in scope to MPI.

28 The EVA Library

Often, a thread cannot continue its work without data emitted by another thread. In this
case it has to wait until the second thread makes this data available. Such an exchange
is often done at synchronization points, i.e. sections dedicated to the exchange of data.
A similar situation occurs, when one thread cannot start execution, before another hasn’t
finished its job.

The need for synchronization limits the speedup that can be achieved through parallel
execution, as portions of the program have to remain idle part of the time. Parallel
programs can also be very difficult to design, as the very fact that different portions of
the code are executed in parallel can make it cumbersome to map an algorithm to its
implementation.

Furthermore, synchronization implies the danger of a dead-lock, where one thread might
wait for a second to finish its work, which in turn waits for the first one to send some
data. The two threads will then just stop executing and might halt the program execution
altogether. Such dead-locks can span more than two threads or processes and are sometimes
extremely difficult to find. Parallel programs that do not need to synchronize between
distributed entities are sometimes also called “embarrassingly parallel”7.

4.2.4 Latency and Bandwidth

The most important difference between the execution of a program over a network, as
compared to its execution on a multi-processor machine, lies in a networks comparatively
low “speed”. This ”speed” is a complex variable. It consists of the bandwidth (the number
of bits received per second on one end of the network) and the latency (the amount of time
it has taken these bits to travel from the source to the recipient. While you can today
scale the bandwidth of a network connection to virtually any level - provided you can pay
for it - there are physical limits to its latency.

Data cannot travel faster than the speed of light. So there is a lower limit to the amount of
time needed to transfer data, no matter how sophisticated the network hardware is. But
since this data will have to pass repeaters and routers along the way, the actual latency
will be much higher than the physical limit. E.g., the latency across the USA is in the
range of 50 msec. Still, this is not a very large value. As a comparison, a modern IDE
hard drive with 7200 RPM has mean access times in the range of 8.5 msec. While latency
does form a limiting factor, and will continue to do so in the foreseeable future, network
latency is already in the range of the mean access times of old MFM hard drives.

In local compute clusters, the limiting factor is more often the bandwidth of the inter-
connecting network. A compute node cannot get the data to be processed as fast as it
can calculate the output. In a Grid environment – a globally interconnected set of com-
pute ressources coupled through standard interfaces – the limiting factor is more often the
latency.

7Or, more recently, “nicely parallel”

4.3 Library Design 29

evaPopulation<T>

evaPthreadPopulation<S,T>

evaMember

evaMPIPopulation<S,T>

Parent class
is specified as

template parameter

evaIndividual<T>

evaDouble

evaBit

gap

boundary

evaBitset<N>

STL vector<T*>evaError

evaBitAP

Figure 4.1: The most
important classes of the
EVA library. Every C++
class that can be stored
in one of EVA’s popu-
lation classes inhertits
features from evaMember.
An evaIndividual is a
“member” class that can
contain “value classes” like
evaDouble. Population
classes inherit many fea-
tures from evaIndividual,
thus enabling them to be
stored in a population
themselves and to compete
with each other.

4.3 Library Design

We will now continue with a discussion of EVA’s design, including its objectives and a
“mission statement”.

EVA is written in C++. An overview of the most important classes is shown in picture
4.1. They will be discussed below. Please also refer to the EVA Reference Manual for a full
description of all classes including their member functions and data structures. Chapter
A in the appendix contains programming examples that further highlight the features
discussed below.

4.3.1 Objectives and Mission Statement

To create, within the Open Source community, a leading implementation of
Evolutionary Strategies and Genetic Algorithms for long lasting, computa-
tionally expensive optimization studies, suitable for deployment in computing
environments ranging from single processor machines to the World Wide Grid.

EVA does not want to replace other, existing implementations of Evolutionary Algorithms
but wants to complement them with a version specifically designed for long lasting studies
in particle physics rather than computations with critical (possibly real-)time requirements.
In contrast to many other implementations it also does not primarily intend to be a platform

30 The EVA Library

for new techniques in EA research8 but to help users running real-world applications.

The explicit mentioning of the Open Source community in the mission statement above is
meant as an invitation to jointly extend the library, such that it fits the needs of an as
wide audience as possible, thus making it “a leading implementation”.

4.3.2 Design Criteria, Requirements and Characteristics

A closer description of the criteria and requirements that have influenced the design deci-
sions related to the EVA library will be presented in this section.

� Long lasting optimization studies : It is assumed that the computation needed
for the user-defined quality assessment of an individual takes sufficiently long such
that the compute time needed by EVA’s core routines doesn’t account for a large
portion of the overall computation. A significant speedup is then achieved much more
through parallel execution of user-defined code than via a high-performance design
of the library itself. Code that doesn’t need to take too much care of computational
effectiveness can however be designed in a way that directly benefits other design
considerations, namely ease of use, extensibility and features.

� Parallelizability : A parallelization framework is a key requirement. Indeed, in
most cases quality assessment of individuals is atomic. Determining the fitness of
one individual usually doesn’t require interaction with other individuals. Due to the
many problems involved in debugging parallel code, another key requirement is that
user modules must be embeddable, without changes, also into a sequential version of
the library. So the main effort in the parallelization of the EVA library has to go into
a design that allows seamless transition from sequential to parallel execution. Only
minimal changes in the core (sequential) code of the library should be necessary in
order to achieve parallel execution, so a more bug-free and manageable code-base
can be achieved. An overview of the general principles of parallel execution is given
in section 4.2.

� Ease of use : Users with a passing familiarity of Evolutionary Algorithms should
be able to use the library. However, at least a basic knowledge of “advanced” C++
constructs such as templates must be assumed. No knowledge about parallel pro-
gramming is required.

� Extensibility : An object-oriented design of the library together with templatized
code should help advanced users to easily extend existing classes of the library and
thus adapt the behavior of the library to their special needs.

8...although it could be used for that purpose thanks to its extensibility

4.4 C++ classes of the EVA library 31

� Code Re-Use and Open Source : Wherever possible, existing code and libraries
should be re-used. To name a few examples, XML parsing and generation, multi-
threaded design and container classes can be based on existing implementations,
such as the GNOME foundation’s libxml2, the POSIX thread implementation of
Linux systems, or the Standard Template Library (STL). Reusing code would not
be possible without the “Open Source” revolution that has made a huge code base
available to the general public free of charge. Reusing such components, however,
means that one has to adhere to their licenses, namely the GNU General Public
License (GPL, see [GPL]). As a direct consequence, the EVA library itself is published
under the GPL.

� Portability : It must be a prominent goal of the development of any larger soft-
ware package to make it as portable as possible. In the early stages of development
and after the initial releases, however, it is a common procedure to focus more on
the establishment of a given feature set than on portability. The EVA library has
indeed been developed with portability in mind, not the least by integrating existing,
portable software libraries wherever possible. A conscious decision has been taken,
however, to initially support only a single platform, and more work goes into the
features of the library than into portability. Realistically this means, that at the
moment the EVA will only be usable on the Linux/x86 platform. Porting EVA to
other platforms will become an important goal in the medium term future, once EVA
has established itself as a proven solution for distributed Evolutionary Algorithms.

� General Purpose : As few assumptions as possible about the subject of optimiza-
tion have been made. However, as execution speed of library code was regarded as
less important than ease of use, extensibility and features, EVA is less suitable for
time-critical computations (e.g. compuations with real-time requirements).

� Ease of installation : Installing the EVA library should not require prior knowledge
of its inner workings. So far, the best choice for the configuration and installation
stage are the GNU autoconf and automake tools. It is thus a requirement to use
these tools throughout the project.

4.4 C++ classes of the EVA library

EVA has a clear class structure that will be discussed below.

4.4.1 The evaMember class

In EVA terminology, every object that can be stored in one of EVA’s container classes
is a “member” (this term will be used as a synonym for the corresponding classes in the

32 The EVA Library

following9). All member classes derive from the evaMember class.

evaMember also specifies the common API of these classes. Some of these interface functions
are specific to every class and should be re-implemented separately for each of them. In
the following, such functionality is marked with the symbol [R]. In very simple cases it is
not necessary to provide all of them (see e.g. the parabola example in section A.3.2), but
implementing these functions is recommended anyway.

A member derived from evaMember can be mutated (handled by the void

evaMember::mutate(void) function) and its value or fitness can be calculated (handled
by double evaMember::value(void)). Furthermore, a member must be able to emit in-
formation about its state (triggered via doInfo() [R]) and in some situations it must be
able to clear its internal data structures (and recursively those of the classes it is derived
from). This functionality is handled via the clearall() [R] function.

Each EVA member has the ability to be converted into an XML representation of its data
structures and to load this data back into them. This important functionality, described
in more detail in section A.3.4, is handled by void loadFromXMLCore(xmlNodePtr) [R]
and string convertToXMLCore(int,int) [R]. It is used to transmit information about
individuals over a network when using the parallel MPI-personality of the EVA library and
to save and reload members to and from disk.

During the optimization process, members are repeatedly polled for their value, e.g. while
they are sorted according to their fitness. Since, following its design goals, the EVA
library is targeted at long running, computationally expensive optimization studies, it is of
vital importance to only recalculate the value of a member, if its internal data structures
contributing to the fitness have changed. The evaMember class therefore implements a
caching mechanism accessible to all classes derived from it.

Changes of the data structures are almost always triggered by the assembly of a
child individual from one or more parents or by the mutation of these children.
Whenever this happens, a boolean variable dirtyFlag, private to evaMember, is set.
double evaMember::value(void) itself is just a wrapper function for virtual double

customValue(void) = 0 [R], i.e. a purely virtual function that must be specified by a
programmer in his derived classes. value() first checks, whether dirtyFlag is set, and if
so, calls customValue(). Otherwise the stored value from the last fitness calculation is
returned. Just like value() , void evaMember::mutate(void) is just a wrapper function
for another, purely virtual, function, named customMutate(void) [R]. It must be specified
by the user. The main duty of mutate() is to set dirtyFlag as soon as the mutation
process is finished. and to trigger the recalculation of the individual’s fitness.

9It is unrelated to the term “member function”

4.4 C++ classes of the EVA library 33

To summarize the above : Classes deriving from evaMember should
at least implement the functions double customValue(void), void

customMutate(void), void loadFromXMLCore(xmlNodePtr), string

convertToXMLCore(int,int) and void clearall(void) in order for EVA to
work properly. Additional functions might be needed in special cases.

This shouldn’t be a big constraint for users, as they only deal with an implementa-
tion of an individual designed to describe their optimization problem. This individual
itself is derived from a set of classes that provide many utility functions facilitating the
creation of the functions mentioned above. Predefined versions for common cases (e.g. :
Gauss mutation in the case of Evolutionary Strategies) are available for a user to choose
from. But, as EVA does not make any assumption about the design and data content
of an individual, it is not possible to provide generic versions of these functions for all
possible cases. The sections 4.4.3 and A.3.2 describe the process of creating an individual
in more detail and it will become obvious that the creation of a new individual class is
quite easy in the majority of cases.

None of the criteria and functionality discussed above are specific to either Evolutionary
Strategies or Genetic Algorithms. They can be used in conjunction with both of them.

4.4.2 Values

In EVA terminology, a value is a member class (i.e., it is derived from evaMember) and
resembles one of the standard C/C++ types. Currently available are the evaDouble class
implementing a double and the evaBit implementing a boolean value. This infrastructure
provides the necessary framework to implement both Evolutionary Strategies and Genetic
Algorithms10.

The reason for basic types to be reimplemented as classes is the functionality required for
each value. E.g., like with any other member, it must be possible to mutate them. In the
case of evaDouble this can be achieved by adding a random number with a gaussian prob-
ability density function (PDF)11 to it. In the case of evaBit “mutation” means changing
its value from true to false or vice versa. A value class knows about the appropriate
mutations itself. Another example is the transformation to XML, which is best handled
by the class itself. From the point of view of an object oriented programmer, it is much
more natural to have code to modify data accompany that data as part of the same class
rather than to use stand-alone functions.

It should be noted that, as an Evolutionary Algorithm naturally contains a multitude of
values as part of each individual, a non-negligible overhead is incurred through this design,

10A more convenient GA class might be evaBitset, see section 4.4.4 for further information
11Henceforth this will be called a “gaussian random number”

34 The EVA Library

Figure 4.2: Gaps and bound-
aries in the value range of
a floating point variable are
achieved by a transformation
from an internal to a user-
visible value in the evaDouble

class. All mutations known to
evaDouble are applied to the
internal representation rather
than the user-visible value.
This helps to reduce code-
complexity while retaining the
ability to use an arbitrary
amount of gaps and open or
closed boundaries.

compared to a “bare-bones” implementation using only basic C++ types. However, a
significant simplification in the class tree structure could be achieved this way (see figure
4.1), as all members, from values to populations, share the same API. For a templatized
individual or a population12 there is therefore no difference, whether they contain values,
individuals or populations. Sophisticated features like multi-populations13 therefore come
at no additional cost.

Since EVA’s focus is on long lasting optimization studies – with long lasting calculation of
an individual’s fitness – the overhead incurred by this design decision doesn’t play a big
role, and it was possible to greatly simplify the code, thus making it less error-prone and
easier to understand.

The evaDouble class, as an implementation of a “value” class, will now be dis-
cussed in more detail. As was said above, evaDouble implements the functionality of a 64
bit floating point number (a “double” value).

Using an evaDouble

The evaDouble class comes with a full set of utility functions implementing common oper-
ations such as multiplication, division, addition, subtraction and various kinds of compar-
isons with other (real or class) double values. The one difference in using an evaDouble is
that in order to find out its value one has to use the value() function. As an example, in
order to calculate the sine value of an evaDouble, one has to use a construct similar to

12Both are container classes, see below
13populations containing competing populations as members, again containing any possible member,

etc.

4.4 C++ classes of the EVA library 35

// [...]

evaDouble x=1.,y;

y=sin(x.value());

// [...]

Mutating an evaDouble

The evaDouble class is mainly used in Evolutionary Strategies14. The most common
mutation scheme for double values in ES is to add a gaussian random number to it. The
generation of such random numbers is discussed in detail in section A.4.2. The evaDouble

class is meant as a fully usable implementation of double values in a class framework and
thus already implements its own mutation scheme (using the customMutate() function
and evaMember’s value caching mechanism). All that needs to be done in order to mutate
an evaDouble is therefore to issue a call to evaDouble::mutate(). This function is really
implemented in evaMember and takes care that the value of the object is recalculated.

Gaps and boundaries in the value range of an evaDouble

As users frequently have to deal with variables that are only defined within upper and/or
lower bounds, it is necessary to be able to restrict the values an evaDouble can assume.
However, varying a floating point variable only within a given range is difficult to achieve
(albeit not impossible), if this variation is done by adding a gaussian random number to
its value. The problem gets worse if one of the key requirements for a variable is that it
not only has upper and lower boundaries, but that there also may be intermittent gaps in
its value range. An example might be a variable that may not assume values close to 0 due
to a singularity in the fitness function of an individual. See section A.3.3 for an example
involving the restriction of the value range using a gap.

A simple value transformation solves this problem. Internal values are mapped to their
external, user-visible representation using a function similar to the one shown in picture
4.2 for a variable with a lower and upper bound and two gaps. The continuous internal
representation of an evaDouble greatly facilitates the implementation and application of
mutations, while the user “sees” a variable with a value range that is restricted according
to his requirements. Any number of non-overlapping gaps is allowed, with global upper
and lower bounds to a variable, if needed. Variable with only an upper or lower bound or
no bounds and gaps at all are of course possible. A big advantage of this implementation,
as compared to the more standard transformation using trigonometric functions (as is done
e.g. in the ROOT framework’s TMinuit implementation of minimization functions) is that
only linear transformations, shifts and changes of signage are involved. This means that a
higher accuracy can be achieved.

14Although they also serve a purpose in the evaBitAP class, which implements a bit value with dynam-
ically adapted flip probability

36 The EVA Library

4.4.3 The evaIndividual class

In EVA terminology, an ”individual” is every class entity that can compete with other
entities of identical structure and complies to the evaMember class API (i.e., is derived
from it in the most common case). It is usually a container class holding other basic values
or objects. Thus an individual would, in the context of Evolutionary Algorithms, be called
a ”gene”.

The evaIndividual<T> class is an implementation of an EVA individual. However, an
evaIndividual<T> is much more than just a container for objects such as evaDouble’s
(in the case of Evolutionary Strategies) or evaBit’s (in the case of Genetic Algorithms).
Being derived from the Standard Template Library’s vector<T> class15, it can hold all
class objects that are derived directly or indirectly from the evaMember class. As the
evaIndividual<T> class itself is derived from evaMember and implements its API, an
evaIndividual<T> can hold other evaIndividual<T>s. This adds enormous flexibil-
ity. E.g., an individual implementing a feedforward neural network could contain a con-
tainer of evaDouble values for each layer of a network, each container being just another
evaIndividual<T> (see section A.4.4)..

A consequence of the decision to make the evaIndividual<T> class a derivative of the
STL vector<T> class is that the data contained in it must be implemented through the
use of classes. E.g., if one wants an individual to hold a set of double values, it is not
possible to simply use an evaIndividual<double>, the reason being that the template
argument of an evaIndividual<T> must comply to the evaMember API. While this adds
some computational overhead, this isn’t much of a problem in the context of Evolutionary
Strategies. After all, there is information associated to each double in an Evolutionary
Strategy, because the most common mutation is the Gauss mutation (see section 4.4.2).

Being derived from it, an evaIndividual<T> has the full STL vector<T> API. As a
consequence, users can enjoy a familiar API when setting up an individual.

The size of an individual can be altered at run time, should a task need a variable number
of parameters. Please note that a variable size of an individual cannot be used, if the
“shift” functionality is needed in conjunction with multi-populations.

Pointers are being used for performance reasons for the members stored in an
evaIndividual<T>.

4.4.4 The evaBit, evaBitAP and evaBitset classes

The evaBitset class implements a basic GA framework for the EVA library. It is an an
extension to the STL class bitset<N>. The interface of this class is to a large extent
identical to the evaIndividual class and also shares a large portion of its algorithms. The

15evaIndividual<T> is actually derived using “:public vector<T *>”, so evaIndividual<T> contains
pointers to the objects stored in the vector.

4.4 C++ classes of the EVA library 37

STL bitset<N> already adds quite a bit of functionality to the evaBitset<N> class, such as
the ability to flip single bits. A STL bitset<N> is set up using a template parameter N that
specifies its size, and evaBitset<N> shares this convention. Setting up an evaBitset<N>

can thus be done similar to evaBitset<64> largebs, for a bitset with 64 bits16. See a
manual of the STL library for further information about the STL bitset<N> class.

An alternative approach to evaBitset<N> for the implementation of Genetic Algorithms
are the evaBit and evaBitAP classes. evaBit is derived from evaMember and can thus
be stored in an evaIndividual<T>. A “gene” in a GA application could therefore be
implemented using an evaIndividual<evaBit>. While this would certainly be a more
elegant approach than the evaBitset<N>, it also causes a lot of computational and memory
overhead. A class like evaIndividual<T>, but derived from the STL bitset<N> is therefore
much more suitable to large scale problems requiring a high performance implementation.

evaBitAP is a class that is derived from evaBit. It implements a dynamic adaptation of
its flip probability using an evaDouble.

Like an evaDouble, evaBit and evaBitAP are “value” types. In contrast to this, an
evaBitset<N> is a full-scale individual.

4.4.5 The evaPopulation class

In EVA terminology, a population is an assembly of objects of same type that can compete
against each other. The evaPopulation<T> class assumes that each of these objects has the
evaMember API (most notably : its value can be calculated using the value() function
and it can be mutated using the mutate() call). An evaPopulation<T> is thus very
similar to the evaIndividual<T> class (see section 4.4.3), and indeed it is derived from
it. evaPopulation<T> adds a framework to duplicate or recombine, mutate and sort its
member objects. As evaPopulation<T> can store any object that has the evaMember API
and, as evaPopulation<T> itself implements it, an evaPopulation<T> can store other
populations and let them compete against each other. This feature is called a ”multi-
population”. It can be used to explore different regions of the parameter space using
different populations.

No difference is made between Genetic Algorithms and Evolutionary Strategies on the level
of an evaPopulation<T>.

4.4.6 The evaPthreadPopulation and evaMPIPopulation classes

evaPthreadPopulation<S,T> provides seamless parallelization of Evolutionary Algo-
rithms based on the implementation of evaPopulation<T>. Since parent classes are spec-
ified by a template parameter, customized versions of evaPopulation<T> can be paral-

16This can be used to implement a double class based on its bit representation

38 The EVA Library

lelized. evaPthreadPopulation<S,T> is targeted at multi processor machines, with SMP
machines being the most likely platform. g++ can’t handle separate compilation of tem-
plate functions, so the implementation of evaPthreadPopulation<S,T> can be found in
the header file. The usage of this class is almost identical to evaPopulation<T>, as the
majority of changes is confined to overloaded versions of the variate() and optimize()

member functions of evaPthreadPopulation<S,T>. This also ensures that users do not
have to care for the details of the parallelization, but can continue to use the individuals
they have already used for populations with sequential execution.

evaMPIPopulation<S,T> is, from a users perspective, mostly identical in usage to
evaPthreadPopulation<S,T>. The only real difference is that its constructors need to
get access to the command line arguments using the main() function’s int argc and char

**argv parameters.

Communication with XML

The EVA library uses the help of the GNOME foundations libxml2 library to parse XML
descriptions of classes derived from evaMember and is able to convert any of the core XML
objects to XML. This functionality also forms the basis for the parallelization of the EVA
library using the “Message Passing Interface” (MPI). A server creates XML descriptions
of individuals that need to be mutated and evaluated, which is done by remote client
processes after parsing and loading the XML descriptions of these individuals. They are
subsequently sent back, again in XML format.

4.4.7 The evaError class

This class implements the framework needed for exception handling. An evaError class
can store information necessary to locate the source of an error, such as the name of the
class and the name of the member function that an error occurred in. Furthermore it stores
the error message itself. Using its printErrorMessage() function it is able to generate a
formatted error message from this information.

4.5 Performance Measurements

This section presents a set of performance measurements for the EVA library. It should be
emphasized that such measurements depend highly on the test conditions, such as speed
and load of the machines being used, as well as network bandwidth and load. As it is in
the nature of a random number generator to produce random values, it is possible that
your results will differ from the ones presented here. All examples shown use Evolutionary
Strategies rather than Genetic Algorithms, due to their importance to this thesis.

4.5 Performance Measurements 39

Number Of Generations
0 500 1000 1500 2000 2500 3000 3500 4000

F
it

n
e
s
s

0

2000

4000

6000

8000

10000

2x10

1+1 strategy

1+4

1+9

1+49

1+99

Figure 4.3: The progress
of ES populations of dif-
ferent sizes is shown as a
function of generations.
The size of a popula-
tion influences the suc-
cess rate. A “1+49”pop-
ulation (1 parent, 49 chil-
dren) achieves better re-
sults than a 1+4 strategy.
Only little improvement
is visible when going from
50 to 100 members. The
ideal size of a population
depends on the optimiza-
tion problem.

4.5.1 Number of members of a population

In this example an Evolutionary Strategy searches for the minimum of a simple parabola.
Picture 4.3 shows the impact of the size of a population on this optimization process. The
y-value shown is the value of the parabola as a function of the input parameter. Using a
strategy with just one parent and one child (“1+1”), only little progress can be seen. Using
5 individuals (1 parent, 4 childs), the optimum at 0 is approached much quicker. Even
faster progress can be achieved with 1 + 9 , 1 + 49 and 1 + 99 strategies. It can be seen,
however, that one doesn’t gain much by going from 50 to 100 individuals. This is typical
for Evolutionary Strategies. Unless one has hundreds of machines at hand, it is therefore
recommended, when using the EVA library, to limit the size of a population. The optimal
size for a given problem depends mainly on the complexity of the evaluation function.

4.5.2 Two child individuals with multi-populations

In the next example a multi-population with 1 parent population and two child popu-
lations is parallelized using evaPthreadPopulation<S,T> and evaMPIPopulation<S,T>.
Each child population runs in a separate thread or process (for POSIX threads or MPI
respectively). The number of generations used for the optimization in each child popula-
tion can be varied. This is equivalent to varying the length of the parallel calculation, as
during the optimization of each child population no data is exchanged between client and
server or the threads. Picture 4.4 shows the time needed for the overall optimization as
a function of the number of generations in each child population. Only a fit of a linear
function to the measured points is shown, as the time needed increases linearly with the

40 The EVA Library

Number Of Generations
0 200 400 600 800 1000

T
im

e
 [

s
]

0

500

1000

1500

2000

2500

3000

3500

4000

Seria
l E

xecutio
n

POSIX Threads

Message Passing Interface

3
4
 g

e
n

e
ra

ti
o

n
s
 :

 M
P

I
fa

s
te

r
th

a
n

 s
e
ri

a
l
e
x
e
c
u

ti
o

n

3
5
9
 g

e
n

e
ra

ti
o

n
s
 :

 M
P

I
fa

s
te

r
th

a
n

 P
O

S
IX

 t
h

re
a
d

s Figure 4.4: Time needed
for the optimization of
a multi-population as a
function of the number
of generations in each
child population. Multi-
threaded execution and
execution on a cluster us-
ing the Message Passing
interface (MPI) clearly
outperform sequential ex-
ecution.

number of generations in the child populations.

As expected, the MPI and POSIX thread personalities of the EVA library outperform the
sequential execution of the optimization. MPI and POSIX threads are able to achieve
a speedup of close to 1.8 over sequential execution for a large number of generations in
this example. The speedup mainly depends on the length of the sequential portion of
the computation performed by the server in-between two generations – the clients are idle
during this time.

Additional tests in a low-overhead environment have shown, that with two MPI clients
running on different machines or two threads a maximum speedup of almost 2 can be
achieved. See section 4.5.3 for further information.

A closer look at the area below 5 generations of plot 4.4 reveals another feature. Picture
4.5 shows that, in this example, the MPI personality has an overhead of roughly 50 seconds
over the sequential execution and the POSIX thread personality, that both have a very
similar overhead. This is not an unexpected feature, as the time needed to generate and
parse XML descriptions of individuals and to send such a description over a network costs
time17. It is therefore recommended to use the MPI personality only for tasks, where
the evaluation part of the calculation takes sufficiently long. Picture 4.4 shows that the
MPI personality performs better than sequential execution when the optimization lasts
longer than 34 generations in each sub-population. Please note that these values will vary
depending on your optimization task.

Picture 4.5 shows some of the time measurements used to create the “linear” fit. It is
visible, that they do not match the fit function very well in this particular area. It should

17Please note that the XML description of an entire population can have a size beyond one megabyte.

4.5 Performance Measurements 41

Number Of Generations
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
 [

s
]

0

10

20

30

40

50

60

70

Serial Execution

POSIX Threads

Message Passing Interface

O
v
e
rh

e
a
d

 M
P

I
v
s
.
s
e
ri

a
l
e
x
e
c
u

ti
o

n
 c

a
.
5
0
 s

e
c
o

n
d

s

Figure 4.5: Execution via
MPI results in a cer-
tain overhead due to the
need to parse and gen-
erate XML descriptions
of population members.
Please note that this is
an extreme example, as
the XML description of
a whole population, as is
used in multi-populations,
can be several megabytes
in size. Furthermore, as
is shown in 4.4, the slope
of the MPI curve is much
lower than for sequential
execution.

be noted, however, that the area shown only represents about 0.5% of the area used for the
fit and that for a low number of generations unpredictable influences such as the Operating
System’s service programs running in parallel to the optimization have a large effect.

4.5.3 Two child individuals with scalable time delay

In this example the evaluation function of the individuals contained a call to
usleep(microseconds). Using this technique it is possible to arbitrarily scale the length
of the parallel calculation. No further calculation was done in these individuals. Each
individual was equipped with just 4 evaDouble objects, resulting in only a very small
overhead compared to the situation described in section 4.5.2. The maximum speedup
quickly approaches the theoretical maximum of 2 for both MPI and POSIX Threads, as is
shown in picture 4.6.

It is obvious that the overhead of the MPI personality is much higher than for the Posix
Thread personality.

4.5.4 MPI and the Grid

From the perspective of a user running an MPI program on a Grid, as far as the usage is
concerned, there shouldn’t be many differences compared to MPI running on a local cluster.
It is the MPI library and the middleware (e.g. Globus and/or the EDG18 framework) whose

18European Data Grid

42 The EVA Library

Length of parallel execution in each individual [s]
0 2 4 6 8 10 12 14 16

S
p

e
e

d
u

p
 w

rt
.

s
e

q
u

e
n

ti
a

l
e

x
e

c
u

ti
o

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

faster execution

slow-down

POSIX Threads : low overhead - high speedup. Almost independant of length of parallel execution

MPI : high overhead - slower executon for small length of parallel execution

Figure 4.6: The speedup
(multiples of sequential
execution) is shown for a
population with one par-
ent and two child individ-
uals in an idealized situ-
ation (see text) for MPI
and POSIX threads as a
function of the length of
the calculation done by
each individual in par-
allel in each generation.
It is visible that the the-
oretical maximum of 2
is reached within short
time.

task it is to hide the specifics from a user. Various implementations exist that let users run
MPI programs over a Grid. The most well-known examples are MPICH-G2 and PACX (see
[PACX]). At least in theory another possibility to run MPI programs on a Grid is to submit
the MPICH mpd daemon as a Globus/EDG job, together with the actual program to be
executed (as part of the EDG “sandbox”). Practical tests, however, have shown that there
are many problems involved with this approach, apparently related to firewalls blocking
ports, but also related to an odd feature of mpd, which truncates hostnames, transforming
fully qualified names (like e.g. tau.ep1.ruhr-uni-bochum.de) into their corresponding
base names (e.g. tau).

Programmers, on the other hand, should be aware that the latencies involved in running
MPI over a WAN19 are significantly higher than in a LAN20.

Figure 4.7 shows the round trip times as returned by the ping command for 1000 signals,
first in a 100 MBit LAN, secondly over a WAN connection between Karlsruhe and Bochum.
It is obvious that a factor of 120-150 in the latency will have an impact on program
performance. It must be noted, however, that the actual effect of this higher latency is
confined to the transfer of data between nodes, and thus depends mainly on the amount
of data being transferred and the time spent in calculations in-between data transfers.
Running the same program used to gather the data for figure 4.6 over the WAN between
Karlsruhe and Bochum has indeed shown that the LAN program had a speed advantage
of roughly 20% for a small length of the parallel execution. For longer periods of time in
between data transfers the difference between WAN- and LAN-execution almost vanished.

19Wide Area Network
20Local Area Network

4.5 Performance Measurements 43

ping : roundtrip [ms]
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

0

20

40

60

80

100

120 LAN - Local Area Network

High Network Activity ?

ping : roundtrip [ms]
16 18 20 22 24 26 28 30

0

20

40

60

80

100

120

WAN - Wide Area Network

Figure 4.7: The ping

command sends a signal
to another computer in
a network and measures
the time until the sig-
nal is returned by the re-
mote host. This time is
a measure of the latency
in a network. Laten-
cies in LANs are much
lower than in WANs. La-
tency thus is one of the
most important limiting
factors for parallel exe-
cution over a wide-area
network.

4.5.5 Scaling

In this example a population with 1 parent and 128 children was executed on between 2
and 129 nodes21. “timedelay” individuals (as described in section 4.5.3) with a delay of 16
seconds were used. The purpose of this test was to show how well the MPI personality of
the EVA library scales to large numbers of nodes.

Picture 4.8 shows the resulting speedup. It is visible, that execution time goes down from
5 hours, 42 minutes in the sequential case to 2 minutes, 50 seconds when running each
individual on a separate node.

An interesting feature of this test are the steps. They are a result of the fact that a speedup
can only be achieved if the maximum number of individuals per node is decreased. As an
example, executing 128 child individuals on 127 nodes means that one node has to execute
2 childs. Adding just one node halves the execution time. Likewise, 64 “client” nodes will
lead to the same execution time as 127 nodes.

4.5.6 Tracking an Evolutionary Strategy’s success

In this example the Evolutionary Strategy’s remarkable ability to find absolute minima
even in the presence of local minima will be demonstrated. A test function

f(x, y) = (cos(x2 + y2) + 2)(x2 + y2) (4.5)

212 nodes means 1 server + 1 client executing 128 child individuals

44 The EVA Library

Number of clients
20 40 60 80 100 120

S
p

e
e
d

u
p

 w
rt

.
s
e
q

u
e
n

ti
a
l
e
x
e
c
u

ti
o

n

0

20

40

60

80

100

120
128 clients (1 individual per client)

64 clients (2 individuals/client)

43 clients (3 ind./client)

32 clients (4 i./c.)

Close to
 lin

ear s
peedup

2 minutes, 50 seconds

5 hours, 42 minutes, 22 seconds

Figure 4.8: Running
an Evolutionary Strategy
with 1 parent and 128
child individual in paral-
lel on between 2 and 129
compute nodes exhibits a
significant speedup. The
execution time is reduced
from 5 hours, 42 min-
utes to below 3 minutes.
The “stairs” are a conse-
quence of the fact that a
speedup can only occur if
the maximum number of
individuals per compute
node is decreased.

shown in one dimension in figure 4.9 on [0 : 10] was chosen that, in two dimensions,
features concentric valleys around the global minimum at (0, 0). The valleys reappear with
increasing frequency with increasing distance from the global minimum. This example uses
the ROOT individual discussed in section A.5.

With a start value of (100, 100) and a step width of σ = 1, all parameter sets tested by EVA
in the search for the minimum of equation 4.5 were then displayed in a two-dimensional
ROOT histogram (see figure 4.10). The plot also shows a contour plot of equation 4.522.

The two parameters x and y of each individual, implemented as evaDoubles were given
boundaries, such that no higher value than 100 could be assumed. It is obvious from figure
4.10 (upper right corner), that no values higher than (100, 100) were tested by the library.

The algorithm then very quickly converges towards the global minimum at (0, 0) and
doesn’t seem to be affected by the local minima present in the form of concentric valleys
around this point.

Figure 4.10 was created using a rather small step width of σ = 1. The effect is a very
narrow optimization path. Figure 4.11 shows the effect of using a larger step width. The
algorithm converges faster and at the same time searches a wider area. On the negative
side, once individuals close to the global optimum are found, no significant progress is
made anymore, as the step width isn’t adapted quickly enough to match the smaller search
area. This is visible as an aggregation of individuals around (0, 0).

Another effect can be demonstrated using figures 4.11 and 4.10 : If equation 4.5 would be
changed in such a way that an even deeper minimum at, say, (40, 80) would be present, then

22Please note, though, that, due to its very fine structures shown in figure 4.9, the formula is not plotted
accurately, as a consequence of binning effects.

4.5 Performance Measurements 45

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

2)+2) x2f(x)=(cos(x

x

f(x)

In 2 dimensions :
concentric valleys around (0,0)

incre
as

ing fr
eq

uen
cy

Figure 4.9: A test
function with a large
number of local optima
can be used to demon-
strate the remarkable
ability of Evolution-
ary Strategies to find
global minima even in
very complicated cases.
The one-dimensional
function is shown for
demonstration purposes
– the test was conducted
using a two-dimensional
version (see figures 4.10
and 4.11)

it could only be found using a either much larger step width or a much larger population.
Neither a step width σ = 1.0 nor σ = 4.0 would have been sufficient, the ES would still
have converged in the then local optimum at (0, 0). The choice of the step width and the
size of the population is thus crucial to the success of an Evolutionary Strategy, at least
when using Gauss mutation as the main means of mutation.

In a test, TMinuit, an implementation of a gradient descent (see e.g. section 3.3.1) wasn’t
able to find the global optimum, but got stuck at a very early stage. This highlights
again that Evolutionary Strategies are much more suitable than a gradient descent to
minimization problems involving local minima.

46 The EVA Library

x
0 20 40 60 80 100

y

0

20

40

60

80

100
)2+y

2
)+2)(x2+y

2
f(x,y)=(cos(x

Boundrary

B
o

u
n

d
rary

Minimum

 = 1.0σ

Figure 4.10: The plot shows all
coordinates tested by EVA in
the search for the global min-
imum of equation 4.5. A small
step width of 1.0 was used.
Both evaDouble objects of the
evaIndividual class used in
this case were restricted in
their value range to values be-
low 100. It is visible that the
Evolutionary Strategy was able
to find the global optimum at
(0, 0) quickly and on a direct
way. In comparison, a gra-
dient descent would easily get
stuck in a local minima.

x
0 20 40 60 80 100

y

-20

0

20

40

60

80

100
)2+y2)+2)(x2+y2f(x,y)=(cos(x

Boundrary

B
o

u
n

d
rary

Minimum

 = 4.0σ

Figure 4.11: The same op-
timization was performed as
in figure 4.10, but with a
much larger step width. It
can be seen that the algo-
rithm converges more quickly
and that the search path is
wider. The algorithm never-
theless has problems to find the
global optimum and “hovers”
around (0, 0) due to the step
width being too large. This
happens despite the dynamic
adaptation of the step width
(see text). Choosing an appro-
priate step width is thus an im-
portant task.

Chapter 5

BABAR Data: Enhancement of Particle
Signals

Following the introduction of the BABAR detector system, this chapter discusses the
application of the EVA library’s implementation of Evolutionary Strategies to the opti-
mization of a set of cuts in the reconstruction of three decay modes of the D±

s in the
BABAR experiment, including a discussion of the creation of “fake” peaks.

This chapter practically demonstrates an optimization problem that involves very heavy
computations, as discussed in section 2.1, and can benefit from distributed optimization
techniques like the ones provided by the EVA library.

The discussion of the BABAR experiment in the section below is kept intentionally short,
as the focus of this chapter is on the application of Evolutionary Strategies on physics
optimization problems. Further information on the BABAR experiment and the associated
accelerator complex can be found in [GANJ02].

5.1 The BABAR Experiment

It is the primary goal of the BABAR experiment to systematically study CP violation
in the decay of B mesons. “CP violation” refers to the fact that, unlike expectations
believed to be true up until the early sixties, the laws of physics do not remain unchanged
when applying both a charge (“C”) conjugation and a parity (“P”) transformation. The
Application of a parity transformation means changing the sign of spatial coordinates,
charge conjugation is the operation that transforms a particle into its anti-particle. CP
violation was first observed at a level of 0.2% in 1964 in the decay of neutral K mesons
by Jim Cronin and Val Fitch. CP violation is believed to be partly responsible for the
apparent lack of anti-matter in the universe. An introduction to the topic of CP violation
can e.g. be found in [LHCBCP], [BABARCP] and [ROB98].

48 BABAR Data: Enhancement of Particle Signals

Figure 5.1: BABAR ,
PEP-II and the Linear
Accelerator for Elec-
trons and Positrons
at SLAC. Electrons
reach 9,0 GeV in the
PEP-II synchrotron,
positrons have an energy
of 3,1 GeV , resulting in
a center of mass energy
of 10,58 GeV at the
collision point. This is
also the energy of the
Υ (4S), a bb̄ resonance
only insignificantly above
the energy threshold
needed for the production
of BB̄ pairs.

One of the reasons for CP violation lies in an asymmetry present in the mixing of quarks,
as is observed in the K0/K̄0 or the B0/B̄0 system. Within the Standard Model, quark
mixing is described by the CKM (Cabibbo-Kobayashi-Maskawa) matrix, a 3x3 complex
unitary matrix. This matrix has only 4 independent variables – 2 real numbers A and λ
and a complex phase (ρ, η). It is the existence of a complex coupling that is responsible
for CP violation.

A direct consequence of the unitarity of the CKM matrix is that it is possible to depict
the components of the first and last column as a triangle in a complex plane, leading to a
relation between the angles of this triangle and the 4 independent variables A, λ, ρ and η.

[AUBERT1] describes a measurement of the unitarity triangle’s β angle using the
BABAR detector, which can be considered to be the most significant contribution to Parti-
cle Physics originated at the BABAR experiment so far. The observation of a new, narrow
meson decaying to D+

s π
0 at a Mass of 2.32 GeV/c2 (see [AUBERT2]) also has the potential

to enhance todays understanding of elementary particle physics.

Before discussing the BABAR detector system itself, we will now take a short look at the
accelerator complex PEP-II at SLAC1 / Stanford.

1Stanford Linear Accelerator Center

5.1 The BABAR Experiment 49

Figure 5.2: The
BABAR detector and
its subsystems : (1)
vertex detector, (2) drift
chamber, (3) Cherenkov
detector with (a) read-
out (b) quartz crystals,
(4) calorimeter with (a)
barrel (b) end-cap, (5)
superconducting coil and
(6) instrumented flux
return

5.1.1 The Asymmetric B-factory PEP-II

The asymmetric PEP-II synchrotron – a descendant of the symmetric PEP ring – at SLAC
consists of two separate beam pipes for electrons e− and positrons e+. Both particle types
are accelerated to different energies, using the linear accelerator, and are then injected
into PEP-II. Electrons reach 9,0 GeV , positrons have an energy of 3,1 GeV , resulting in
a center of mass energy of 10,58 GeV at the collision point. This is also the energy of
the Υ (4S), a bb̄ resonance only insignificantly above the energy threshold needed for the
production of BB̄ pairs. The Υ (4S) resonance is thus a very good source for studying B
mesons. See picture 5.1 for an overview of PEP-II and the linear accelerator.

Due to a limited phase space, the B mesons from Υ (4S) → BB decays are produced almost
at rest in the center of mass frame. The asymmetry in the beam energies yields a boost
of the B mesons with a significant momentum in the laboratory frame. This enables the
measurement of the time-dependant CP asymmetry in the decays of neutral B mesons.

CP violating effects in the B system are expected to be large. But, unfortunately, the
decay channels which are interesting for CP violation have a very small branching fraction
(of the order of 10−4). Therefore, a large sample of B’s (about 107) is necessary to perform
these measurements.

5.1.2 The BABAR detector system

In order to facilitate the understanding of the measurements and optimizations presented
in section 5.2, the components of the BABAR detector system are discussed below. A good
overview of BABAR can be found in picture 5.2.

50 BABAR Data: Enhancement of Particle Signals

The Silicon Vertex Tracker (SVT)

The Silicon Vertex Tracker (SVT) provides the required vertex resolution for the measure-
ment of the CP violation and other decay-time dependant measurements. In addition,
when charged particles have a low transverse momentum (pT < 120 MeV/c) and cannot
be measured by the central drift chamber any more, the SVT is capable of acting as an
independent tracker.

The SVT has been designed to minimize multiple scattering. It takes into account
the physical constraints imposed by the PEP-II geometry, such as the presence of the
permanent magnets close to the interaction point, which are necessary to separate the
beams shortly thereafter. The polar angle acceptance θ is −0.87 < cos θlab < 0.96
(−0.95 < cos θcm < 0.87) and is limited by the beam line elements. A detailed description
of the SVT and its components can be found in [SVT].

The SVT consists of five double-sided layers of silicon detectors, mounted on carbon fiber
support cones. The first three layers provide the tracking resolution while the last two are
necessary to measure low momentum tracks independently of the drift chamber informa-
tion. The modules are read out by a special, low-noise, radiation-hard chip mounted on a
passive circuit.

The Driftchamber (DCH)

The main purpose of the Drift Chamber (DCH) is the precise and efficient measurement
of charged particle parameters such as momenta and angles, with transverse momenta pT

beyond 120 MeV/c. The DCH complements the information about the impact parameter
and the direction of the track measured by the SVT. The reconstruction of decay vertices,
for example of K0

S
particles, outside of the SVT, requires – in addition to the transverse

momenta and position – the measurement of the longitudinal position with an accuracy
of about 1 mm. The DCH has also to provide the particle identification at relatively
low momenta by measuring the ionization loss (dE/dx). Furthermore it must supply
information for the charged-particle trigger.

The DCH has an outer radius of 80.9 cm and a length of 280 cm. The interaction point is
shifted by 36.7 cm relatively to the center of the chamber in order to improve the forward
acceptance, given the asymmetric boost for the Υ (4S) events. The acceptance of the DCH
covers the polar angle −0.92 < cos θlab < 0.96. 40 layers of small hexagonal cells provide
spatial and amplitude measurements. Each hexagonal cell consists of a 20µm rhenium-
tungsten sense wire operating nominally in the range 1900–1960 V. It is surrounded by 6
cathode wires. The longitudinal position is measured by placing the wires in 24 layers at
a small angle with respect to the z-axis.

The amplitude measurement provides the energy loss (dE/dx) used for particle identifica-
tion at low momenta. The mean dE/dx resolution of 7% provides good π/K separation
up to 700 MeV/c.

5.1 The BABAR Experiment 51

Each four layers are grouped in one super-layer with the same orientation for sense and
field wires within a given super-layer. This structure allows to perform a fast local segment
finding as the first step in pattern recognition. The information from all super-layers is
included in the level-1 trigger track finding, while only the axial super-layers are involved
in the level-1 trigger pT determination.

The tracking system consisting of the central drift chamber and the vertex tracker is
arranged inside a magnetic field of 1.5 T produced by a superconducting magnet.

The Cherenkov Detector (DIRC)

The study of CP violation requires the ability to tag the flavor of one of the B mesons and
to fully reconstruct the second B decay. The maximal momenta of the kaons used for the
tagging of a B via the decay cascade b→ c→ s are about 2 GeV/c. In contrast, the pions
and kaons from the rare two-body decays B0 → π+π−, K+π− have momenta between 1.7
and 4.2 GeV/c.

The Detector of Internally Reflected Cherenkov light (DIRC) [DIRC] is the principal par-
ticle identification system of the BABAR detector. Charged particles, produced at the
interaction point inside the detector, pass the quartz bars in which Cherenkov radiation
is produced. The angle of this radiation (θc) with respect to the incoming particles is
a measure of their velocity (v). The Cherenkov photons propagate along the rectilinear
bars by total internal reflection, preserving the angular information and exiting outside
the detector into a large pure water tank, called the standoff box. Using the position of
the photo-tubes and the arrival time of the signals, the DIRC can be seen as a three-
dimensional imaging device. Since the tracking system provides the track position and
the angles, the measured photon propagation angles are used to determine the Cherenkov
angle. The arrival time of the signal can be also related to the propagation angles and
provides an additional constraint, which can be useful to avoid ambiguities in the signal
association due to high background rates.

The DIRC consists of quartz bars inside the detector and the standoff box, supporting
photo-multipliers outside the detector at the backward end. The bars are supported by a
mechanical structure which is attached to the barrel iron via special structural elements.
The water tank is composed of a cylinder, a cone and 12 cylindrical sections. 10752 photo-
multipliers are mounted on the sectors placed at about 1.17 meters from the exit point to
permit a precise measurement of the angle for each photon. The standoff box is arranged
inside a special low magnetic field volume (see [MFM]) which diminishes the value of the
fringe fields from the main solenoid.

The Electromagnetic Calorimeter (EMC)

The Electromagnetic Calorimeter (EMC) allows the measurement of electromagnetic show-
ers with high efficiency and good energy and angular resolution. The energy range from

52 BABAR Data: Enhancement of Particle Signals

20 MeV to 9 GeV covered by the EMC is required to detect the photons coming from the
decay of π0s and ηs as well as from radiative and electromagnetic processes. The QED
processes, like e+e− →e+e− (γ) and e+e− →e+e− , used for the calibration and luminosity
measurements set the high limit, while the capability to reconstruct the B mesons in modes
containing multiple π0s and ηs with high efficiency set the low limit.

The Electromagnetic Calorimeter (EMC) covers polar angles of −0.78 < cos θlab < 0.96. It
contains 6580 CsI crystals doped with thallium. Each crystal has the shape of a trapezoidal
pyramid. The crystals range from 16 to 17.5 radiation lengths in thickness. The front faces
have a typical diameter of ∼5 cm in each coordinate.

Each crystal is wrapped with a diffuse reflective material (TYVEK) and housed in a thin
egg crate-like carbon fiber composite mechanical structure. There are 280 such modules in
the barrel (7 types, 40 of each type) and 20 identical end-cap modules. The crystals are read
out with two independent PIN photodiodes (2 cm2 area) glued to their rear faces. Dual-
range preamplifiers are arranged directly behind the photodiodes in a shielded housing,
that also provides a thermal path for heat removal. Shielded ribbon cables carry analog
signals to the end flanges of the barrel and the back plate of the end-cap, where additional
amplification and digitizing electronics are mounted providing a total of four overlapping
linear ranges.

The energy resolution is measured directly with a radioactive source at low energies and
with electrons from Bhabha scattering at high energies, yielding resolutions of σ(E)/E =
5.0 ± 0.8% at 6.13 MeV and σ(E)/E = 1.9 ± 0.07% at 7.5 GeV, respectively. The energy
resolution can also be inferred from the observed mass resolutions for the π0 and η, which
are measured to be around 7 MeV and 16 MeV, respectively.

The π0 and η data are also used to measure the angular resolution of the calorimeter. It
is found to vary between about 12 mrad at low energies and 3 mrad at high energies.

The calorimeter is also used for the separation of hadrons from electrons, and in conjunction
with the IFR for muon- and KL- identification.

The Instrumented Flux Return (IFR)

The primary aim of the Instrumented Flux Return (IFR) is to identify muons with high
efficiency and purity, and to detect neutral hadrons, mainly K0

L
in a wide momentum and

angle range. It plays a major role in tagging the flavor of neutral B mesons via semileptonic
decays, in the reconstruction of vector mesons, mainly J/ψ and in studying rare decays of
B and D mesons involving leptons. The K0

L
reconstruction is of special importance for the

study of exclusive B decays into CP eigenstates.

Single gap resistive plate chambers (RPCs) with two-coordinate readout are embedded in
the steel flux return system of the magnet, which acts as a muon filter and hadron absorber.
The barrel is segmented into 19 RPC layers and the end-cap into 18 layers with increasing
thickness from 2 cm for the inner to 10 cm for the outer plates. Two extra layers of RPCs

5.2 Parametric Optimization in the BABAR experiment 53

are installed between the EMC and the solenoid cryostat to detect the particles escaping
from the EMC.

K0
L

and other neutral hadrons interact in the steel of the IFR and can be identified as
clusters which are not associated with charged tracks. Monte Carlo simulation shows that
approximately 65% of K0

L
with momenta above 1 GeV/c produce a cluster in the cylindrical

RPC’s, or a cluster with hits in two or more planar RPC layers. Un-associated clusters
which have an angular separation of less than 0.3 rad, are combined into a composite
cluster. The direction of the neutral hadron is defined by the event vertex and the center
of the neutral cluster. No information on the energy of the cluster can be obtained. Since a
significant part of hadrons interact before reaching the IFR, the information from the EMC
and the cylindrical RPC is combined in order to perform the matching of the clusters.

5.2 Parametric Optimization in the BABAR experiment

The application of the EVA library to an optimization problem involving the maximization
of the significance (see section 2.1.1.1 for the definition) of particle signals in set of his-
tograms will be discussed below. Measured data from the BABAR experiment, taken from
an analysis done at Ruhr-Universität Bochum by Sergey Ganjour (see [GANJ02]) served
as the basis for parametric optimization studies.

It was the purpose of this analysis to perform precise measurements of D+
s and D∗+

s meson
production from B mesons and qq̄ continuum events near the Υ (4S) resonance.

Due to its direct impact on the measured branching fractions the efficient reconstruction
of Ds mesons was of special importance. The optimization of this reconstruction will be
presented below, after a short general discussion of the selection of Ds decays in BABAR .

5.2.1 Selection of D+
s

decays

In order to understand the parameters involved in the optimization process it is necessary
to first take a closer look at the techniques used to select and reconstruct Ds mesons.
Additional details can be found in [GANJ02].

Preselection of events

It is required that charged tracks originate from within ±10 cm of the interaction point
along the beam direction and ±1.5 cm in the transverse plane. Each track is then required
to have at least 12 hits in the drift chamber.

These are also the main requirements of the GoodTracksLoose list of tracks defined as part
of the BABAR analysis framework.

54 BABAR Data: Enhancement of Particle Signals

Identification of particles

The BABAR detector features the ability to distinguish between Kaons and Pions directly
using the DIRC. In addition, the energy loss dE/dx in the drift chamber and the vertex
detector helps to identify at least one of the Kaons produced in the D+

s decay. As part of
the BABAR analysis software, two track selectors, KSimpleLoose and KSimpleTight, are
available, amalgamating the likelihood coming from each sub-detector for a track to be
a Kaon to one single variable. These criteria are used henceforth in the selection of D+

s

mesons.

In the BABAR experiment, a photon candidate is defined as a localized energy maximum
in the calorimeter. It must be isolated from any other photon candidate or track and must
have a lateral energy profile consistent with a photon shower.

Selecting multi-hadron events, Skims

Only Ds mesons coming from B mesons and the qq̄ continuum are of interest in the context
of the analysis, making it necessary to filter out data coming from beam-gas events, Bhabba
events or τ pairs. The requirement of at least three GoodTrackLoose tracks results in the
rejection of most of these events.

Due to the vast amount of data produced by the BABAR detector it is furthermore nec-
essary to create a data sample that is already enriched with the desired event type. This
procedure is called “skimming”. The InclDs skim, used in [GANJ02], uses loose cuts to
select predominantly decays of D+

s particles into Φπ+, K̄∗0K+, K̄0K+ and Φρ+. Only the
subsequent decay modes Φ → K+K−, K̄∗0 → K−π+, K0

s → π−π+ and ρ+ → π+π0 where
used to reconstruct Ds mesons in the following.

Three criteria based on particle identification, track quality and momentum are used to
produce the skims. Kaon candidates are required not to have been identified as “very
tight” pions (using the KMicroNotAPion selector) in order to be accepted as the basis
for the reconstruction of a D+

s candidate. One of the three tracks coming from the D+
s

must fulfill the requirements of the GoodTracksLoose list. The invariant mass of the D+
s

candidate is required to be within ±160MeV/c2 of the nominal D+
s mass, and the mass of

the Φ, K̄∗0, K0
s and ρ+ candidates must be within ±5 σ of their observed width. Finally

the momentum of the D+
s candidates in the center of mass system must be higher than

1.3GeV/c.

5.2.2 Reconstruction of D+
s mesons

The reconstuction of D+
s mesons in three of the four decay channels mentioned in section

5.2.1 will be discussed below. Due to reasons discussed in section 5.2.3, the decay channel
D+

s → Φρ+ will be left out of the discussion.

5.2 Parametric Optimization in the BABAR experiment 55

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

e
n

tr
ie

s

0

1000

2000

3000

4000

5000

+ π
Φ

→ + s
D

+ π
Φ

→ +
D

Figure 5.3: Invariant
mass distribution for
the reconstruction of
the D+

s → Φπ+ decay
(right peak). The plot
was created using mea-
sured data taken at the
BABAR experiment and
uses the cuts specified
in [GANJ02]. The left
peak stems from the
Cabibbo-suppressed decay
mode D+ → φπ+.

D+
s → Φπ+

A D+
s candidate in this decay channel is reconstructed from three charged tracks coming

from a common vertex. Two of these tracks are required to be identified as kaons, one using
the tight list, the other using the loose list. They are required to be oppositely charged.
In this particular decay the angular distribution of the kaons has a cos2 θH dependence,
as the φ meson is polarized longitudinally. θH is defined as the angle between the K+ in
the φ rest frame and the φ direction in the D+

s rest frame. As this distribution is almost
flat for the background, it can be used to reject a significant amount of unwanted events.
The original analysis required the invariant mass of the K+K− system to be within 8 MeV
of the nominal mass of the φ. A value | cos θH | >0.3 was required in addition to a fit
probability P(χ2)D+

s
>0.01 and a minimal momentum of the D+

s mesons of 1.3 GeV/c.
These criteria also formed the parameters that were used in the optimization described in
section 5.2.3.

Figure 5.3 shows the invariant mass distribution for the D+
s → Φπ+ decay when using

the original cuts. The lower mass peak represents the Cabibbo-suppressed decay mode
D+ → φπ+. The squared significance S2 of the Ds peak in this plot is 3154.27.

D+
s → K̄∗0K+

In the original analysis the invariant mass of the K−π+ system was required to be within
65 MeV of the nominal value of the K̄∗0 mass. Again a cut on the helicity angle was
applied, with the cut value being identical to the one used in the case of D+

s → Φπ+. Like
in this case the fit probability P(χ2)D+

s
had to be higher than 0.01 and the momentum of

the D+
s mesons had to be above 1.3 GeV/c.

56 BABAR Data: Enhancement of Particle Signals

D+
s → K̄0K+

[GANJ02] required that the invariant mass of the Ks → π+π− system was within 15 MeV
of the nominal mass of the Ks, and the “bachelor” kaon had to be identified using the
tight criteria. In order to improve the purity of the reconstructed Ks the angle between
the Ks direction and the direction defined by its decay vertex and the primary vertex of
the event was required to fulfill the criterium cosα > 0.98. This rejects the combinatorial
background while no signal is lost. Like in the previous cases P(χ2)D+

s
had to be larger

than 0.01 and the momentum of the D+
s candidate had to be above 1.3 GeV/c.

5.2.3 Optimizing the Squared Significance S2 using the

EVA library

The optimization of S2 in the decay channels Φπ+, K̄∗0K+ and K̄0K+ of the D+
s using the

EVA library will be discussed below. The optimization of the decay channel D+
s → Φρ+ will

be left out of the discussion, due to the difficulties involved in determining the background
from the sidebands in this channel. In practice the background could be obtained either
from Monte Carlo data or from a fit2.

The cuts to be optimized are those presented in section 5.2.2, the algorithm was allowed
to vary four parameters for each channel. This optimization uses the techniques discussed
in section 2.1.

5.2.3.1 D+
s → Φπ+

The optimization was done independently for four data sets, each representing a quarter of
the overall data, equivalent to roughly 2150000 events each. The third quarter yielded the
best results. Optimizations done with the other datasets for the same decay channel also
showed significant improvements of S2, but had worse results than for the third dataset.
This could indicate that more than one local optimum exists in the quality surface, but
might also be a hint that the background levels were different for part of the data, possibly
due to different experimental conditions.

Figure 5.4a shows the result of the optimization, including all intermediate steps, in the S2

– Rsn plane. The large stars represent the best results of a generation, the small triangles
are all other solutions that were tested. Furthermore, lines of equal N allow to conclude,
whether the algorithm favored solutions with a lower background over those with a larger
peak or vice versa. The initial focus of this optimization seems to have been on a lower
background. Further progress could then apparently only be made by varying the cuts in
a way that the total number of entries in the peak region (including the background) was

2Please note that the latter possibility implies additional challenges, as during the optimization stage
a user would not be able to directly control the fit procedure.

5.2 Parametric Optimization in the BABAR experiment 57

0B

N
 ≈Signal/Background

1 1.05 1.1 1.15 1.2 1.25

0
N

+2
B2

N
 ≈ 2

S
ig

n
if

ic
an

ce

3000

3100

3200

3300

3400

3500

3600

3700

3800

Start value

Best individual found

Lines of equal N
Increasing N

Similar N to start value,
but lower background. Individual

hence has higher significance
than start value

a)

generation
0 20 40 60 80 100

0
N

+2
B2

N
 ≈ 2

S
ig

n
if

ic
an

ce

3100

3200

3300

3400

3500

3600

3700

3800 b)

+πΦ → +
sD

Figure 5.4: a) The plot shows all tested solutions during an optimization of the reconstruc-
tion of the decay D+

s → Φπ+ in the S2 vs. Rsn plane. S2 was used as a figure of merit in
this optimization. The best solution found in each generation is shown as a star. Stars with
a higher S2 were found later in the optimization than those with a lower S2. Solutions with
a higher Rsn as well as a higher S2 were found during the optimization. The final result
exhibited a 19.4% higher S2 (of 3766, 03) compared to the start values (with S2 = 3154, 27).
Given the large number of tested solutions it also becomes clear that parallelisation of the
optimization procedure will return results quicker. b) S2 is shown as a function of the
generation of the Evolutionary Strategy. The most progress is achieved during the first 25
generations.

58 BABAR Data: Enhancement of Particle Signals

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

e
n

tr
ie

s

0

1000

2000

3000

4000

5000

6000

optimized cuts

original cuts

a)+πΦ → +
sD

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

ra
ti

o
 o

f
h

is
to

g
ra

m
s
 (

o
p

t.
/o

ri
g

.)

1

1.05

1.1

1.15

1.2

1.25

1.3
b)

Figure 5.5: a) The plot
shows the reconstructed
D+

s → Φπ+ (right peak)
before and after the opti-
mization with S2 used as
a figure of merit. It is
visible that the procedure
has led to a higher num-
ber of entries in the his-
togram. b) The ratio of
both histograms is shown.
The “dip” in the D+

s re-
gion shows that a higher
S2 could be achieved de-
spite a lower signal-to-
noise ratio.

increased.

An interesting feature of the plot is the large amount of tested (and rejected) solutions
near the best solution after 100 generations. This indicates that this solution is actually
close to the global optimum or at least represents a very significant local optimum, as in its
proximity no better solutions could be found, despite many possible solutions being tried.

This is also reflected in figure 5.4b, which shows S2 as a function of the generation of the
Evolutionary Strategy. While initially a better solution could be found in virtually any
of the first 30 generations, only little improvement could be achieved thereafter. This is
typical for the optimization with Evolutionary Strategies.

Figure 5.5 shows the histograms for this decay channel before and after the optimization
(a) as well as their ratio (b). Only the first, second and fourth dataset were used to create
this plot, so the effect of the optimized parameters on data sets can be shown, that were
not used by the algorithm during the optimization.

Several potentially useful solutions were found during the optimization. The best solution

Cuts original optimized
P(χ2)D+

s
> 0.01 > 2.04 ∗ 10−6

Φ mass window ±8MeV/c2 ±10.5MeV/c2

p∗ > 1.3GeV/c > 1.191GeV/c
| cos θH | > 0.3 >0.44

Table 5.1: Selection criteria for D+
s → Φπ+ before and after optimization (see text)

5.2 Parametric Optimization in the BABAR experiment 59

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

e
n

tr
ie

s

0

1000

2000

3000

4000

5000

optimized cuts

original cuts

a)+K
*0

K → +
sD

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

ra
ti

o
 o

f
h

is
to

g
ra

m
s
 (

o
p

t.
/o

ri
g

.)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

b)

Figure 5.6: a) The plot
shows the reconstructed
D+

s → K̄∗0K+ decay
(right peak) before and
after the optimization. A
higher S2 was achieved
by a reduction of the
overall statistic in com-
bination with a higher
signal-to-noise ratio, as
can be seen from the ratio
of the original and opti-
mized histogram (b). S2

is increased by 45% when
using the optimized cuts.

(see again figure 5.5) had a slightly lower signal-to-background ratio to the start value,
but a 19.4% higher S2. It is obvious that the higher S2 is achieved by scaling both the
background and the signal by an almost equal factor. As S2 = N2

N+2B0
, this will still lead to

an improved figure of merit. Another solution found during the optimization (see the large
label in figure 5.4a) had a higher signal-to-noise ratio than the start value while having an
almost equal N . This can only be done by scaling down the background. A lower S2 than
for the best solution was achieved, though.

Looking at table 5.1 it is possible to conclude, what changes were made by the EVA library
to achieve a higher figure of merit. Both the cuts on P(χ2)D+

s
and the Φ mass window

were loosened, in the case of the P(χ2)D+
s

even to an extent that one could safely neglect
this cut. The cut on p∗, while also appearing to be looser than the original cut, could
be actually again left unchanged – the minimal p∗ available in the data is 1.3GeV/c due
to the preselection. The lower boundary on this variable has been intentionally left open.
Enforcing a lower limit of 1.3GeV/c on this variable would have meant that mutations of
this variable would have always pointed away from the boundary, making it less likely for

Cuts original optimized
P(χ2)D+

s
> 0.01 > 0.0109

K̄∗0 mass window ±65MeV/c2 ±34.8MeV/c2

p∗ > 1.3GeV/c > 1.437GeV/c
| cos θH | > 0.3 >0.398

Table 5.2: Selection criteria for D+
s → K̄∗0K+ before and after optimization (see text)

60 BABAR Data: Enhancement of Particle Signals

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

e
n

tr
ie

s

0

500

1000

1500

2000

2500

3000

3500

optimized cuts

original cuts

a)
+K

0
K → +

sD

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

ra
ti

o
 o

f
h

is
to

g
ra

m
s
 (

o
p

t.
/o

ri
g

.)

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

b)

Figure 5.7: a) The plot
shows the reconstructed
D+

s → K̄0K+ (right
peak) before and after op-
timization. Like in the
case of figure 5.6 the in-
crease of S2 was achieved
by a reduction of the
overall statistic in com-
bination with a higher
signal-to-noise ratio, as
can be seen from (b).
S2 is increased by 16.3%
when using the optimized
cuts.

the cut to remain unchanged, thus leading to worse results. The only cut that is tighter
after the optimization is on | cos θH |. The overall effect of these cuts is then consequently an
increase of entries in the histogram. And while the signal-to-noise ratio hasn’t improved,
S2 has done so by a considerable amount. This also shows that it is not always possible
to manually select the better peak, which again underlines the importance of automated
parametric optimization studies.

In contrast to Rsn, S2 presents itself as a viable figure of merit for these studies.

5.2.3.2 D+
s → K̄∗0K+ and D+

s → K̄0K+

Figures 5.6 and 5.7 show the results of the optimization of the channels D+
s → K̄∗0K+ and

D+
s → K̄0K+. In contrast to D+

s → Φπ+, the increase in significance was achieved mainly
by reducing the background. Especially the channel D+

s → K̄∗0K+ features an impressive
45% increase in S2. As shown in table 5.2, this is achieved by much tighter cuts. The
same applies to D+

s → K̄0K+ (see table 5.3) with an increase in S2 of 16.3%, although the
results are not as good as for D+

s → K̄∗0K+.

Cuts original optimized
P(χ2)D+

s
> 0.01 > 0.01005

K̄0 mass window ±15MeV/c2 ±6.9MeV/c2

p∗ > 1.3GeV/c > 1.352GeV/c
cosα > 0.98 >0.9856

Table 5.3: Selection criteria for D+
s → K̄0K+ before and after optimization (see text)

5.2 Parametric Optimization in the BABAR experiment 61

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

e
n

tr
ie

s

0

50

100

150

200

250

300

350

400

450

s
id

e
 b

a
n

d

s
id

e
 b

a
n

d

o
p

ti
m

iz
a
ti

o
n

original cuts

"optimized" cuts

dataset used for optimization

Figure 5.8: A “fake” peak
was created between the D
and Ds peaks by “opti-
mizing” the squared signif-
icance in an area where
no physical peak is present.
Both the histogram result-
ing from the original cuts
and the one using the “op-
timized” cuts are shown. It
can be seen that the fake
peak is really just a random
fluctuation already present
in the original plot. It got
more significant by a re-
duction of entries in the
two sidebands,

5.2.3.3 Achievements of the optimization procedure

D+
s → Φπ+ is the most important decay channel of the D+

s used in [GANJ02]. The
EVA library, using an Evolutionary Strategy with 20 child individuals, yields a 19.4%
improvement of the chosen figure of merit S2 for the D+

s signal compared to the original
cuts. The execution time goes down from 38 hours for the sequential execution to under
2 hours. An improvement of 45% can be seen in the decay channel D+

s → K̄∗0K+ of the
D+

s . These examples show that using automated parametric optimization procedures can
yield significant improvements of an analysis, despite the fact that a substantial amount
of work was invested into choosing the original cuts.

5.2.4 Sanity checks

5.2.4.1 Creating fake peaks

When using automatic procedures to optimize parameters, care has to be taken not to
accidently enhance random fluctuations in the data set, thus creating fake or artificially
large peaks.

Figure 5.8 shows that this can be a real-life problem. Here an attempt was made to create
a fake peak in the flat background between the Cabibbo-suppressed D and the Ds peak
of figure 5.3 by optimizing the squared significance in the area labeled “optimization”. As
usual, the background was taken from the side bands (labeled “side band”). A straight line
was then fitted to the region in order to check, how well the fake peak is still compatible with

62 BABAR Data: Enhancement of Particle Signals

2GeV/c
1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

e
n

tr
ie

s

0

50

100

150

200

250

300

350

400

450

s
id

e
 b

a
n

d

s
id

e
 b

a
n

d

o
p

ti
m

iz
a
ti

o
n

original cuts

"optimized" cuts

dataset not used for optimization

Figure 5.9: The applica-
tion of the cuts used to
generate the fake peak in
figure 5.8 to a different
dataset shows no sign
of a fake peak. This
again underlines that
fake peaks are the result
of random fluctuations
present in the data used
for the optimization.

the assumption of a flat background. The fit yielded a χ2/NDF of 54.5/29, corresponding
to a fit probability of just 0.0028. S2 went up from 1.003 for the original cuts to 9.726 for
the “optimized” cuts.

An important feature of this plot is that, despite the low significance for the original cuts,
the random fluctuation is already visible - albeit compensated by the side bands. The
parametric optimization has only somewhat reduced the number of entries especially in
the left side band, thus increasing S2. As a comparison, S2 for theDs peak is 3154.27±102.8
for the original cuts. The fake peak can thus not be considered to be a large effect.

By the application of the same set of cuts used to create the fake peak to a different dataset
not used for the optimization it can be shown that it just represents a random fluctuation.
This is illustrated in figure 5.9. No fake peak is visible in this plot.

Figure 5.8 represents the worst result that could be achieved in a series of tests with
datasets of varying sizes3. Figure 5.10 shows the squared significance of fake peaks that
could be achieved for datasets varying between 50 and 400 input files.

5.2.4.2 Detecting artificial contributions to optimized peaks

While, in the above example, it is easily possible to establish the existence of a fake peak,
the same does not apply to cuts enhancing a signal4 generated from “real” (i.e. measured)
data. There is no practical way how one could detect a fake contribution to a peak for the
data set used for optimization, unless one is using simulated data and has access to the

3Measured in amount of input files
4such as the Ds peak visible in figure 5.3)

5.2 Parametric Optimization in the BABAR experiment 63

Number of Input Files
0 50 100 150 200 250 300 350 400 450

0
N

+
2
B2

N
 =

2

S
ig

n
if

ic
a
n

c
e

0

2

4

6

8

10

3
0
0
 i
n

p
u

t
fi

le
s

1.003

9.726

original cuts

optimized cuts

Figure 5.10: S2 is shown
for a fake peak (compare
fig. 5.8) and the origi-
nal cuts as a function of
the amount of input data
(measured in “number of
input files”). The cre-
ation of a fake peak in be-
tween the D and the Ds

peak was – with varying
degrees of success – pos-
sible in all cases. Never-
theless S2 is in each case
small compared to the Ds

peak (S2 (Ds) = 3154 for
the unoptimized peak).

“Monte Carlo truth”5.

In theory, provided the amount of available data is large enough, one should see a deviation
from the natural peak form (such as a gaussian), as random fluctuations are unlikely to
be of the same shape as the physical contribution. In practice, however, one rarely has
enough data.

It would be a good indication for a fake peak, if the S2 for the dataset used for optimization
is significantly higher than for other datasets. As an example, the cuts used to produce
figure 5.5 were obtained using just one quarter of a larger dataset. Figure 5.11 shows the
squared significance for all four parts of the dataset in the case of the decay D+

s → φπ+.
Care has been taken to use an equal amount of input events, as S2 depends on the amount
of data being used.

It can be seen that the first and fourth dataset agree very well with the third dataset,
which was used for the optimization. The application of the cuts to the second dataset,
however, yields slightly different results. As two of the three datasets agree very well with
the one used for the optimization and the one with a larger deviation still agrees with it
within its error bounds, one would conclude that the cuts found are usable in an analysis.

Indeed the procedure used here for testing the viability of the optimized cuts can be used
to become independent of random fluctuations in the data. It is always possible to split the
dataset in two parts and to search for two different sets of optimized cuts independently
for both of them. The cuts of the first half are then applied to the second half and vice
versa. This procedure will also give a good indication whether or not one has found a local
optimum, as both optimizations should result in similar cuts.

5or one is using a “background MC”.

64 BABAR Data: Enhancement of Particle Signals

data set
1 2 3 4

0
N

+
2
B2

N
 =

2

s
ig

n
if

ic
a
n

c
e

3450

3500

3550

3600

3650

3700

3750

3800

3850

mean value

d
a
ta

 s
e
t

u
s
e
d

 f
o

r
o

p
ti

m
iz

a
ti

o
n

Figure 5.11: In order
to test the stability of
S2, a set of cuts result-
ing from the optimization
of the reconstruction of
the decay D+

s → φπ+

was applied to four dif-
ferent datasets of equal
size. The third dataset
was used for the opti-
mization. The values
agree well within their
error-bounds.

5.2.4.3 Discussion

While the danger of accidently using a set of cuts that enhances a random fluctuation is
indeed real, it should again be noted that, as shown in figure 5.8, the same also applies to
manually selected cuts. Furthermore, the S2 achieved for the fake peak was small compared
to the one found for the Ds peak, so the observed fluctuation wasn’t large.

One lesson to be learned from this is that optimized cuts should not be used
in conjunction with the dataset that was used for the optimization.

When using the squared significance as a figure of merit, one should also be aware of the
fact that – as shown in the comparison of three decay channels (see figures 5.5, 5.6 and
5.7) – it is not always a larger peak that leads to a higher significance. A lower background
can have the same effect, and so the creation of fake peaks is not a danger present in all
optimizations involving significance.

Chapter 6

CB/ELSA Data: Dalitz Plot Analysis

Following the (intentionally short) introduction of the CB/ELSA detector system, this
chapter discusses the application of the EVA library’s Evolutionary Strategy implementa-
tion to a Dalitz plot analysis done in cooperation with Dr. Bertram Kopf of the CB/ELSA
collaboration [KOPF03]. Dalitz plot analyses, including their relation to optimization
tools, are discussed in section 2.2. This is again an example of parametric optimization
studies involving heavy computation.

6.1 The CB/ELSA experiment

The CB/ELSA experiment is the successor of the Crystal Barrel experiment which, between
1989 and 1996, was used to study the annihilation of protons p and anti-protons p̄ at the
Low Energy Antiproton Ring (LEAR) at CERN/Geneva. CB/ELSA, now located at the
electron accelerator ELSA1 in Bonn/Germany, re-uses the 1380 module CsJ(Tl) calorimeter
capable of exceptional energy and momentum resolution in the reconstruction of neutral
particles in a (close to) 4π solid angle. CB/ELSA is being used to study photo-production.
The detector system is discussed in the following (see also figures 6.1 and 6.2). Additional
details about the CB/ELSA experiment and the associated accelerator complex can be
found in [KOPF02].

Electrons with fixed energies between 0.5GeV and 3.2GeV coming from ELSA hit a
radiation target, responsible for the creation of high-energetic photons through the
bremsstrahlung process. The electrons then pass a magnetic field and are deflected ac-
cording to their particular momentum.

Electrons that have emitted a photon now hit a tagging system, capable of measuring
their energy and emitting a start (time) signal. The energy measurement is then used to in
turn calculate the energy of the photons. Electrons that have not emitted a photon have a

1Elektronen Stretcher Anlage (“Electron Stretcher Device”)

66 CB/ELSA Data: Dalitz Plot Analysis

D.Walther

D.Walther

270

TOF

CB

LH2Beam-Dump

Tagger γ-VetoRadiator

Goniometer

Radiator
Goniometer

Dipol−Magnet
Tagger

Beam−Dump
LH2−Target

CB

TOF
Gamma−Veto

Figure 6.1: Overview of the CB/ELSA experiment

higher momentum and are thus deflected less in the magnetic field. They subsequently hit a
beam dump. The high-energetic photons then hit a liquid hydrogen target (“LH2–target”),
where photo-production is taking place.

Particles coming from the interaction point then pass the CB/ELSA detector, where they
are detected and measured.

Two sub-detectors of CB/ELSA will be discussed in the following, the inner detector and
the electromagnetic calorimeter. These central components of the experiment are also
shown together in figure 6.2

6.1.1 The inner detector

It is the responsibility of the inner detector to distinguish between charged and neutral
final-state particles. Three layers of altogether 513 scintillating fibers, each having a length
of 40 cm, are arranged in a cylinder around the LH2–target. The outer layer’s fibers
are oriented parallel to the beam pipe, the fibers of the middle and inner layer have a
+25o and −25o angle with respect to the beam pipe. This topology allows to determine
the coordinates where a charged particle has hit the detector. Together with the target
coordinates it is then possible to determine, where a charged particle has hit the calorimeter
(see section 6.1.2). As charged final-state particles can have enough energy to pass through
the entire calorimeter, only part of their energy is deposited in it. It is thus not possible
to measure the energy of charged final-state particles with CB/ELSA. Furthermore, in
contrast to the original Crystal Barrel experiment at CERN, CB/ELSA uses neither a
drift chamber nor a magnet, and thus cannot be used to measure the momentum of a
particle.

6.1 The CB/ELSA experiment 67

1

2

3

4

5

o
12

1.1 m

1.4 m

Figure 6.2: Cross section of
the CB/ELSA detector sys-
tem. (1) liquid hydrogen
target; (2) inner detector;
(3) photo-multipliers needed
for the read-out of the in-
ner detector; (4) CsI(Tl)
calorimeter with 1380 seg-
ments; (5) provision of liq-
uid hydrogen for the target.

6.1.2 The Crystal Barrel Calorimeter

The Crystal Barrel calorimeter provides exact energy and momentum information for pho-
tons, mostly coming from the decay of neutral mesons. Using the inner detector (see section
6.1.1) it is also able to measure charged particles, although it is usually not possible to
provide full energy information.

The calorimeter is built from 1380 separate crystal modules, arranged in a barrel in 26
concentric rings around the beam pipe. In order to allow the particle beam to enter
and exit the detector, the calorimeter has 12o openings on both sides. The calorimeter
nevertheless covers a solid angle of 97.8% · 4π.

Every crystal covers a polar angle of ∆Θ = 6o, making it necessary to use 13 different types
of crystals. The inner crystals of type 1– 10 each cover an azimuthal angle of ∆Φ = 6o,
crystal types 11– 13 each cover ∆Φ = 12o.

Each crystal consists of caesium–iodide, doped with thallium (CsI(Tl)). Each crystal has
a length of 30 cm (corresponding to about 16 radiation lengths), making it possible for
photons with energies of up to 2GeV to deposit virtually their entire energy in the crystal.
Thallium has been used to dope the crystals in order to shift the wavelength of the emitted
light, preventing its resorption in the crystals. Each crystal is protected by a titanium cover,
which is itself enclosed in a protective covering, so electric isolation between each module
can be ensured.

68 CB/ELSA Data: Dalitz Plot Analysis

The original Crystal Barrel experiment at CERN was located in a strong (1.5 Tesla) mag-
netic field. This prevented the use of photo multipliers to measure the light coming from
the crystals. Photo diodes have been used instead, and CB/ELSA has inherited this set-
up. The scintillation light has a maximum emission at a wavelength of 550nm. The photo
diodes, however, give best results for infrared light. Wavelength shifters (small plexiglass
wafers) are thus used to achieve better results. Entering light is emitted through the 3mm
thick edges of the wafer, to which the photo diodes are attached. This in particular allows
to use very small photo diodes, which in turn results in a less noisy measurement.

A pre-amplifier is mounted onto the back of each crystal module. Its signals are passed
through shapers and are then transmitted to a ADC readout system, which was newly
developed for CB/ELSA.

Energy calibration is done via the decays of neutral pions into two photons. Calibration
constants are determined in an iterative procedure separately for each crystal, such that
the π0 peak in the invariant mass spectrum of the two photons is at a nominal mass of
134.98 MeV/c2. More then 105 π0 decays are needed to achieve a good calibration.

6.1.3 TOF and Gamma Veto Detector

The TOF (“Time of Flight Spectrometer”) helps to detect charged particles, that pass in
forward direction through the (non-instrumented) end of the inner detector and the hole
in the crystal matrix. It consists of 4 walls, each equipped with 15 scintillator bars. Each
scintillator bar has a length of 3m and a width of 20 cm. Each wall thus covers an area
of 3 x 3m2. In order to detect where a particle has hit the TOF, the bars are mounted in
turn in horizontal and vertical direction.

The Gamma Veto Detector, as seen from CB/ELSA, is mounted behind the TOF. Its
purpose is to detect photons that didn’t lead to a reaction in the LH2 target. It is made
of lead disks, mineral oil (being used as a cherenkov radiator, and photomultipliers.

With its fine-grained electromagnetic calorimeter, as discussed in section 6.1.2, the
CB/ELSA experiment is especially well suited to the measurement of neutral decays. Nev-
ertheless charged particles, such as a proton emanating from a reaction pγ → pπ0η can be
accounted for, using the inner detector2.

6.2 Analyzing the pπ0η final state at CB/ELSA

In order to analyze the reaction pγ → pπ0η for center of mass system energies in the range
2.35GeV ≤ Ecms ≤ 2.4GeV , a Dalitz plot analysis was done in cooperation with a mem-
ber of the CB/ELSA collaboration [KOPF03], using the EVA library. The optimization

2The special strengths of CB/ELSA could also help in the reconstruction of the recently discovered
penta quark Θ+, a particle involving 5 quarks.

6.2 Analyzing the pπ0η final state at CB/ELSA 69

]
2

)
2

 [(GeV/cη0π
2m

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

]
2)

2
 [

(G
eV

/c
η

p2
m

2

2.5

3

3.5

4

4.5

5

5.5

6

 (Data)η0π p→ γp

2

) = 1.232 GeV/c

∆m(

2) = 1.535 GeV/c11m(S
2

)
=

1.
32

 G
eV

/c
2

m
(a

2
)

=
0.

98
 G

eV
/c

0
m

(a

a)

]
2

)
2

 [(GeV/cη0π
2m

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

]
2)

2
 [

(G
eV

/c
η

p2
m

2

2.5

3

3.5

4

4.5

5

5.5

6

2

, Fit) = 1.211 GeV/c

∆m(

2
, Fit) = 1.491 GeV/c11m(S

2
, F

it
)

=
1.

32
4

G
eV

/c
2

m
(a

2
, F

it
)

=
0.

98
99

 G
eV

/c
0

m
(a

 (MC fit)η0π p→ γp

CB/ELSA preliminary !

b)

Figure 6.3: Dalitz plots for the reaction pγ → pπ0η are shown in the case of measured data
(a) and for the fit of phase-space distributed Monte Carlo events to this data (b). m2

pη is
in both cases plotted against m2

π0η. Resonances are indicated by dotted lines.

70 CB/ELSA Data: Dalitz Plot Analysis

]
2

)
2

 [(GeV/cη0π
2m

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

]
2)

2
 [

(G
eV

/c
0

π
p2

m

1

1.5

2

2.5

3

3.5

4

 (Data)η0π p→ γp

2) = 1.232 GeV/c∆m(

2

) = 1.535 GeV/c

11

m(S

2
)

=
1.

32
 G

eV
/c

2
m

(a

2
)

=
0.

98
 G

eV
/c

0
m

(a

a)

]
2

)
2

 [(GeV/cη0π
2m

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

]
2)

2
 [

(G
eV

/c
0

π
p2

m

1

1.5

2

2.5

3

3.5

4

2
, Fit) = 1.211 GeV/c∆m(

2

, Fit) = 1.491 GeV/c

11

m(S

2
, F

it
)

=
1.

32
4

G
eV

/c
2

m
(a

2
, F

it
)

=
0.

98
99

 G
eV

/c
0

m
(a

 (MC fit)η0π p→ γp

CB/ELSA preliminary !

b)

Figure 6.4: Like in the case of figure 6.3, Dalitz plots for the reaction pγ → pπ0η are
shown in the case of measured data (a) and for the fit of phase-space distributed Monte
Carlo events to this data (b). m2

pπ0 is plotted against m2
π0η. Resonances are indicated by

dotted lines.

6.2 Analyzing the pπ0η final state at CB/ELSA 71

]2) [GeV/cηm(p
1400 1600 1800 2000 2200 2400

e
n

tr
ie

s

0

10

20

30

40

50

60

]2) [GeV/cηm(p
1400 1600 1800 2000 2200 2400

ra
ti

o
 M

C
/D

a
ta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
)

=
 1

.5
3
5
 G

e
V

/c
1

1
m

(S

Figure 6.5: a) The plot
shows the projection
of Dalitz plot 6.3a on
the pη mass scale (grey
histogram). Plotted on
top of it is the projection
of the corresponding MC
Dalitz plot (histogram
with error bars). Both
histograms agree well
within the error bound-
aries. b) shows the ratio
of both histograms.

framework, including the “individual” class needed for the optimization (compare A.3), was
created by the author of this thesis, using an evaluation function provided by CB/ELSA
[KOPF03].

As discussed in section 2.2, doing a Dalitz plot analysis means to assign weights to phase-
space distributed MC events, which are subsequently filled into a two-dimensional his-
togram. By adapting the paramters of these weights, a χ2 representing the difference
between this histogram and the corresponding histogram created from data is minimized.

The latter plots, created using measured data, are shown in figures 6.3a and 6.4a. Figures
6.3b and 6.4b show the corresponding Monte Carlo plots after the adaptation of the weights.

In figures 6.3a and 6.3b, m2
pη is in both cases plotted against m2

π0η. 6.4a and 6.4b show
m2

pπ0 being plotted against m2
π0η. Both forms of the Dalitz plot for the reaction pγ → pπ0η

are equivalent.

As can be seen from these plots, the pπ0η final state shows resonances in each two of the
three final state particles. Most notably the ∆(1232), the S11(1535), the a0(980) and, with
a comparatively weak signal, the a2(1320) are visible.

The weight function used by CB/ELSA, following the procedure described in section 2.2
and omitting interference terms, is shown in equation 6.13. It takes into account the
resonances described above.

In the context of this optimization, 16 parameters of equation 6.1 were allowed to be varied,
most notably the relative contribution of each resonance (Rx) as well as the phase space
(Rph.sp.), the masses of each resonance (m) and their widths (Γ). “BW” represents the

3Please note that this represents ongoing work of the CB/ELSA collaboration and that all plots and
formulas shown must be considered to be preliminary!

72 CB/ELSA Data: Dalitz Plot Analysis

]2) [GeV/cη0πm(
600 700 800 900 1000 1100 1200 1300 1400 1500 1600

e
n

tr
ie

s

0

10

20

30

40

50

60

70

]2) [GeV/cη0πm(
600 700 800 900 1000 1100 1200 1300 1400 1500 1600

ra
ti

o
 M

C
/D

a
ta

0

0.5

1

1.5

2

2.5

3

3.5

4 2
)

=
 1

,3
2
 G

e
V

/c
2

m
(a

2
)

=
 0

.9
8
 G

e
V

/c
0

m
(a

Figure 6.6: a) The plot
shows the projection of
Dalitz plot 6.4a on the
π0η mass scale (grey
histogram). Plotted on
top of it is the projection
of the corresponding MC
Dalitz plot (histogram
with error bars). Both
histograms agree well
within the error bound-
aries, especially in the
signal region of the a0

and a2. b) shows the
ratio of both histograms.

Breit-Wigner function, Y are spherical harmonics.

W = R2
ph.sp. +R2

∆10

∣

∣

∣BW (m∆,Γ∆)Y 0
1 (Θp∆

,Φp∆
)
∣

∣

∣

2
(6.1)

+ R2
∆11

∣

∣

∣BW (m∆,Γ∆)Y 1
1 (Θp∆

,Φp∆
)
∣

∣

∣

2
+R2

S11
|BW (mS11

,ΓS11
)|2

+ R2
a0
|BW (ma0

,Γa0
)|2 +R2

a20
2

∣

∣

∣BW (ma2
,Γa2

)Y 0
2 (Θηa2

,Φηa2
)
∣

∣

∣

2

+ R2
a21
2

∣

∣

∣BW (ma2
,Γa2

)Y 1
2 (Θηa2

,Φηa2
)
∣

∣

∣

2
+R2

a22
2

∣

∣

∣BW (ma2
,Γa2

)Y 2
2 (Θηa2

,Φηa2
)
∣

∣

∣

2

Figures 6.5, 6.6 and 6.7 show the three possible projections of the Dalitz plots 6.3 and 6.4.
Monte Carlo projections are plotted on top of data (grey plots). The lower plot in each
figure shows the ratio of both histograms.

Table 6.1 shows the masses of the resonances used in the weight function 6.1 as determined
in the fit, as well as the physical values, taken from [PF96]. It is obvious that even the
preliminary weight function 6.1 used in this Dalitz plot analysis already yields usable
results, despite the fact that interference terms were omitted. The ratios of data- and MC
histograms are in very good agreement, especially in the areas of resonances. This indicates
that the fit has converged and can also serve as a “proof of concept” for the suitability of
Evolutionary Strategies to perform a Dalitz plot analysis. Please note, though, that these
are very preliminary results of the CB/ELSA collaboration, shown solely to demonstrate
the suitability of the EVA library for doing partial wave analysis.

Even better results might be obtainable when using a weight function that includes in-
terference terms. Indeed table 6.1 shows a deviation between measured and real mass
especially for the S11, despite its strong signal. But it should also be noted that this could

6.2 Analyzing the pπ0η final state at CB/ELSA 73

]2) [GeV/c0πm(p
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

e
n

tr
ie

s

0

10

20

30

40

50

60

70

]2) [GeV/c0πm(p
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

ra
ti

o
 M

C
/D

a
ta

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
)

=
 1

.2
3
2
 G

e
V

/c
∆

m
(

Figure 6.7: a) The plot
shows the projection of
Dalitz plot 6.4a on the
pπ0 mass scale (grey his-
togram). Plotted on
top of it is the projec-
tion of the correspond-
ing MC Dalitz plot (his-
togram with error bars).
Again both histograms
agree well within the er-
ror boundaries. b) shows
the ratio of both his-
tograms.

also be related to the fact that this particle is close to the phase space boundaries. In com-
parison the mass of the a2, which is located further away from the phase space boundary,
is reproduced much better despite its weaker signal.

6.2.1 Achievements of the Optimization Procedure

Apart from the reduction in processing time through parallel execution (compare section
6.3 and especially figure 6.8 for a quantitative comparison), another motivation for using
EVA as the basis for the analysis of the pγ → pπ0η reaction was to get an independent
confirmation of EVA’s alleged ease of use – performing a Dalitz plot analysis was not
foreseen as as a use case for the deployment of Evolutionary Strategies during the design
phase of the EVA library.

The results shown in the last section allow the conclusion, that the deployment of the
EVA library in the context of Dalitz plot analyses can be considered to be successful. The
development of the “individual” class, not taking into account the time needed to write

Particle physical mass [GeV/c2] fitted mass [GeV/c2]
∆ 1.232 1.211
S11 1.535 1.490
a0 0.983 0.989
a2 1.318 1.324

Table 6.1: Fitted and physical masses of particles in figures 6.3 and 6.4

74 CB/ELSA Data: Dalitz Plot Analysis

Time [min]
0 50 100 150 200

)2
χ

Q
u

a
li
ty

 (

600

650

700

750

800

TMinuit declares
convergence

E
S

: 30 clien
ts o

n
 15 C

P
U

s
ES: sequential execution

E
S

:15 clien
ts o

n
 3 C

P
U

s

TMinuit: sequential execution
(Gradient Descent)

Dalitz Plot Analysis with Evolutionary Strategies and Gradient Descent - Comparison

Figure 6.8: The plot
shows four different opti-
mization runs in a Dalitz
plot analysis. The qual-
ity of the fit is shown
as a function of the
time needed. Sequen-
tial execution of Evolu-
tionary Strategies (cir-
cles) is slowest, followed
by the gradient descent
with TMinuit (curve with
“steps”). Execution of
30 clients on 15 CPUs
is fastest. All four opti-
mization runs achieve al-
most identical results.

the evaluation function, took around an hour, and no major difficulties were encountered.

Even less development effort would have been necessary if EVA’s interface to the ROOT
library would have been used, as in this case only the evaluation function (i.e the weight
function 6.1) needs to be supplied. No knowledge of the inner workings of EVA are required
in this case. A certain overhead in compute time must be accepted, however, as ROOT is
built around an interpreter. See section A.5 for further information on the EVA library’s
interface to ROOT.

The large number of parameters of the weight function again demonstrates the need for
minimization algorithms. Even when just testing 10 values for each of the 16 parameters,
if the evaluation of one parameter set takes a second, the total compute time would have
amounted to 1016 seconds, equivalent to 3.17 ∗ 108 years. Even though both gradient
descents and, to a lesser extent, Evolutionary Strategies exhibit the danger of not finding
the global optimum of a fit function, the usage of such minimization algorithms thus can
not be avoided.

6.3 Comparison with Standard Procedures

The standard algorithm used for minimization in a Dalitz plot analysis is a gradient descent
(see section 3.3.1). Unfortunately the standard tools for gradient descents in particle
physics do not use parallel execution to speed up the minimization.

Figure 6.8 shows four different optimization runs in a Dalitz plot analysis. Three use

6.3 Comparison with Standard Procedures 75

Evolutionary Strategies, running on between 1 and 15 CPUs in parallel, a fourth run uses
a gradient descent implemented by the ROOT framework’s TMinuit class. The quality
of the fit is shown as a function of time. The three fits involving Evolutionary Strategies
were stopped when they exceeded 182 minutes, the time needed by TMinuit to declare
convergence. All four optimization runs had achieved almost identical values by then and
had converged. Sequential execution of an EVA-based fit turned out to be slightly slower
than the gradient descent-based fit. EVA was also executed with 15 child individuals on
3 machines of different specifications4, a technical environment that should be available in
most Universities. A significant speedup both over sequential execution of EVA and over
TMinuit can be observed as a consequence of parallel execution. The fastest optimization
run was done with 30 child individuals running on 15 CPUs. The parameter space can
be checked more thoroughly due to the larger number of children and more CPU time
is avaible to each child individiual. It is therefore not surprising that this optimization
needed the least time of all four runs. An additional factor of 2 in the speedup could have
been achieved by executing each child individual on its own CPU.

It is clear that parallel Evolutionary Strategies lead to significant time savings compared
to sequential execution of a gradient descent-based fit. And the fact that both the gradient
descent and the optimization based on Evolutionary Strategies (ES) find the same optimum
reiterates that both algorithms can be treated as equal in their optimization power. With
noisy input data ES might even have an additional advantage over a gradient descent due
to the ability to bypass local optima of an evaluation function.

It must be said that there are still unanswered questions regarding a regular deployment of
EVA in doing Dalitz plot analysis. It is, as an example, not clear how to determine an error
on the measured masses shown in table 6.1. But at the very least, as the weight function
6.1 is independent of the minimization method used, EVA’s superior ability to perform the
fit in parallel can be used to obtain good start values close to the global optimum, which
can then be used in more standard, sequential minimization routines such as MINUIT or
TMinuit. It should thus be possible to reduce the overall execution time of a Dalitz plot
analysis by a large amount in this way.

Evolutionary Strategies might also allow for an almost interactive work style in the design
phase of the weight function 6.1. Test and design of a Dalitz plot analysis take up signifi-
cantly more time than the final fit, which can then be done with a gradient-descent based
method.

The “stairs”, representing the check of the function values of all partial derivates, in the
plot for the TMinuit-based optimization in figure 6.8 also make it clear that TMinuit itself
might benefit from parallelisation using similar techniques as those deployed in the EVA
library.

41 Athlon 2500+, a Celeron 2 GHz and a Dual PIII-1GHz, all with 1 GByte of main memory

76 CB/ELSA Data: Dalitz Plot Analysis

Chapter 7

Summary and Outlook

Most particle physics analyses implicitly comprise a number of optimization tasks – be it
the reconstruction of a charged track in a drift chamber or the “fitting” of a mathematical
function to a histogram. Some optimization tasks however, while having the potential to
yield significant improvements of an analysis, exhibit a larger scale than can be realisti-
cally handled by a single computer in acceptable time. Parallel execution of Evolutionary
Algorithms thus provides a cost-effective and easy-to-use alternative to more standard
algorithms running on a single machine, such as a gradient descent.

The work presented in this thesis deals with automated parametric optimization in particle
physics analysis. As an example the quality of a particle signal in a histogram, measured
with a figure of merit such as the squared significance, can be increased by a significant
factor, despite the fact that the original analysis was done carefully and included the
manual optimization of the particle signals. The optimization potential in part stems from
the fact that, in the presence of a large number of parameters, it can become very difficult
to manually choose the optimal set of cuts, as quality criteria for a particle signal other than
the signal-to-noise ratio can relate to the best set in non-obvious ways. As an example, the
squared significance can be increased when doubling the number of background events while
increasing the number of entries in the signal by a factor of 1.5 only. In such environments,
automated parametric optimization studies can yield very good results.

The danger of creating fake contributions to particle signals through the usage of automated
paremetric optimization procedures is being investigated in this thesis and is found to be
small, albeit present. Techniques to circumvent this problem are discussed.

In an idealized benchmark the EVA library – an implementation of parallel Evolutionary
Algorithms developed as part of this thesis and used in the optimizations – is able to reduce
execution time of an automated optimization from hours to minutes, involving 128 child
individuals running on the GridKa cluster of Forschungszentrum Karlsruhe. Similarly, in
a real-world optimization of the D+

s → Φπ+ decay channel of the D+
s , using measured

data taken at BABAR and involving 20 child individuals, execution time goes down from

78 Summary and Outlook

38 hours for the sequential execution to under 2 hours. This optimization yields a 19.4%
improvement of the chosen figure of merit for the signal, the squared significance S2. An
improvement of 45% can be seen in the decay channel D+

s → K̄∗0K+ of the Ds.

Other minimization and maximization tasks, such as Dalitz plot analyses, also benefit from
the parallel execution, allowing for a more interactive work style through shorter execution
times. EVA proves, in this context, to be able to achieve similar results to a gradient
descent, albeit in much shorter time.

Depending on the paradigm at hand parallel computation can be a difficult task. Parallel
programs are not easy to debug and may exhibit complex error sources such as dead-locks
and synchronization problems. Care has been taken in the design of the EVA library to
provide users with easy means to debug their code. More specifically, apart from the ability
to perform optimizations in parallel using either POSIX threads or the Message Passing
Interface (“MPI”), EVA also comprises the possibility to peform optimizations sequentially,
helping users to debug their code in a conventional environment. This way error sources
coming from parallel execution can be excluded, and errors due to dead-locks and other
difficulties related to parallel execution are confined to the EVA library itself. This should
overall lead to more robust code.

An intuitive interface to a standard tool of particle physics analysis – the ROOT framework
– has been developed for EVA, such that the evaluation of individuals of an Evolutionary
Strategy can be done inside the ROOT C++ interpreter. This also means that existing
code used for the manual optimization of a particle signal can be used as part of the
automated parametric optimization.

The EVA library is one of the first toolkits to combine the ability to perform parallel
parametric optimizations with an intuitive interface to the ROOT framework, targeted at
the particle physics community, while providing features like the ability for easy debugging
and a common interface to both Genetic Algorithms and Evolutionary Strategies.

Future plans for the EVA library include the development of an interface to the Parallel
Virtual Machine (PVM), a library similar in scope to MPI, as well as the development
of a Web services interface. As EVA will be made available as Open Source, covered by
the GNU General Public license, public contributions can be easily incorporated into the
library, leading to an even more robust and feature-rich environment.

Appendix A

Using the EVA library

A.1 Installation

A.1.1 How to obtain EVA

EVA is available as source code from http://www.ep1.rub.de/̃ ruediger or via eMail from
the author (send an email to ruediger@berlich.de).

A.1.2 Requirements

In order to compile and use the EVA library, you need at least one Linux machine equipped
with a relatively recent C++ compiler. So far the library has been tested with g++ version
3.2 and 3.3. In order to benefit from EVA’s POSIX thread personality, a cheap dual-
processor machine is sufficient. A cluster or at least a set of networked Linux machines is
recommended in order to benefit from EVA’s MPI personality. The EVA library has so far
only been tested with the MPICH implementation of the MPI API. Memory requirements
depend on your application, as the main memory consumption stems from the individuals
being used in a population.

A.1.3 Compilation and Installation

EVA is equipped with a configure script generated using the GNU autoconf and automake
utilities. All that should be necessary to compile EVA is to issue the commands in listing
A.1 in the EVA directory. The last command should be issued as user root. You will then
find the library in the directory specified via the --prefix switch. In order to use shared
libraries you then need to add EVA’s lib directory to the file /etc/ld.so.conf1 and to

1The directory might be different for Linux distributions other than SuSE Linux

80 Using the EVA library

Listing A.1: Commands needed to compile and install the EVA library
evadir > ./ c on f i gu r e −−p r e f i x=/where /EVA/ should/be/ i n s t a l l e d
evadir > make
evadir > su
evad i r# make i n s t a l l

Listing A.2: Setting up shared libraries
/ root # cd / e tc
/ e tc # vi l d . so . conf
/ e tc # ld c on f i g −v

run the command ldconfig -v as user root. See listing A.2.

A.2 Documentation

The EVA library’s classes and member functions have been extensively documented with
the help of the Doxygen framework. In addition to the information contained in this chapter
it is thus possible to obtain a reference manual by running the doxygen command in the
EVA library’s root directory. Please make sure that the dot program out of the graphviz

package is installed, so class diagrams can be included in the reference documentation.
graphviz is part of most modern Linux distributions.

A copy of the reference manual should also already be available in the EVA distribution.

A.3 Usage

You have now learned the basic structure of the EVA library. The following section contains
a “hands-on” introduction to creating individuals and setting up populations. Users should
then be able to write their own code and individuals based on the EVA library.

A.3.1 Overview

EVA is designed as a class library rather than a monolithic application. This means that a
user has to assemble and compile a program, based on the means provided by this library.
While this puts some additional burden on the user, the added flexibility and extensibility
makes this approach worthwhile. It is assumed that the target group for this library -
physicists with the need for long lasting optimization studies - has sufficient knowledge of
the C++ programming language, so that the two main tasks to be performed by the user
don’t represent a major hurdle.

A.3 Usage 81

In the context of Evolutionary Algorithms, optimization means that a quality is assigned
to a set of conditions (usually represented by numerical or binary parameters). In other
words, an optimization problem is represented as a function f(xi)

2, where xi is a set of
parameters. It is up to the EVA library to vary the parameter set in a way that f(xi) is
minimized or maximized (depending on the problem). It is up to a user to specify f(xi) and
to provide EVA with information about the number and characteristics of the parameters
xi. Currently EVA “understands” numerical parameters (represented as the evaDouble

class) and bit parameters (represented by the evaBit, evaBitAP and evaBitset classes).

In order to define an optimization problem, a user must derive a class3 from the
evaIndividual<T> class (in the case of parameters specified as evaDouble’s or evaBit’s)
or from the evaBitset<N> class (for a predefined collection of bits)4. T is a C++ tem-
plate parameter and stands for the type of a parameter. These two classes contain a
purely virtual C++ function (henceforth called “evaluation function”) virtual double

customValue()=0; that must be overloaded5 by the user in his derived class. This func-
tion is used to assign a quality (or fitness) to a given parameter set. Setup of parameters
can be done in the derived classes’ constructor. As evaIndividual<T> is derived from
the STL vector<T> class, it can also be set up using the standard STL means for filling
vectors. evaBitset<N> is an extension of the STL bitset<N>, with N being the size of
the bitset.

In addition to basic “value” classes an evaIndividual<T> can also hold other
evaIndividual<T>’s, simply by using the latter as a template parameter.

Once the user has set up these individuals, he needs to initialize a population of them. This
is usually done in main(). It is at least necessary to specify the type of the individuals
used in a population, the size of the population, and the number of parents. Finally
the population’s optimize() function is called, which tries to search for a minimum or
maximum of customValue() by varying the parameters.

These two steps will now be explained in more detail with a few examples, introducing
more options of the library along the way.

A.3.2 Searching the minimum of a parabola

Probably one of the easiest examples of a minimization problem6 is the search for the
minimum of a parabola f(x) = x2. This function has just a single input parameter and a
minimum at x = 0 . It is therefore possible to check that EVA returns the correct minimal

2Usually called fitness
3henceforth called an “individual”
4Alternatively, a predefined individual, “evaRootIndividual”, provides a convenient interface to the

ROOT framework, such that researchers can use ROOT scripts to perform the evaluation of parameters
and do not have to create their own individuals. See section A.5 for further information

5i.e. defined
6“Hello World”, the EVA way ...

82 Using the EVA library

Listing A.3: Class declaration of the basic “parabola” individual
class parabola

: public eva Ind iv idua l <evaDouble >(1)
{

public :
parabola () ;
double customValue (void) ;

} ;

Listing A.4: The customValue() member function of the “parabola” individual
double parabola : : customValue (void)
{

// i n i t i a l i z e the r e s u l t
double dummy, r e s u l t =0. ;

// parabo la i s an ex tens ion to the STL vec tor c l a s s and can use i t s
// member f unc t i on s . At a l a t e r time , we might want to use a parabo la
// with a h igher dimension , so we w i l l do the c a l c u l a t i o n o f the
// parabo la in such a way t ha t we do not depend on a f i x e d dimension .
int i , s i z e t h i s = s i z e () ;

for (i =0; i<s i z e t h i s ; i++)
{

// We can ask f o r the evaDouble ’ s va lue using the va lue () func t ion .
// We have to use the −> operator because our STL vec tor conta ins
// po in t e r s to evaDouble ’ s . The at () func t ion i s one o f two p o s s i b i l i t i e s
// to gain access to a component o f an STL conta iner c l a s s . In our
// example , we could a l t e r n a t i v e l y use the cons t ruc t
// dummy=(� t h i s) [i]−>va lue () ; But at () a l s o does some error checking
// and i s ea s i e r to wri te , so we use i t ins tead .
dummy=at (i)−>value () ;

// e . g . f (x , y)=xˆ2 + yˆ2
r e s u l t += dummy � dummy ;

}

return r e s u l t ;
}

value for x. This minimization problem will now be implemented in the EVA framework.
The first step is to derive a class from evaIndividual<T> (see listing A.3).

Obviously the evaIndividual<T> will contain objects of the type evaDouble. The
evaDouble class behaves mostly like a standard double value, with a few exceptions that
will be explained further below. So far, our parabola class is effectively a STL vector
containing one or more pointers to an evaDouble. evaIndividual<T> of course provides
some additional functionality over the STL vector class that a user will rarely have to care
about, but which is needed internally for the optimization process.

What remains to be done is to declare and define a few member functions. First and
foremost, a suitable customValue() function mus be created (see listing A.4).

A.3 Usage 83

Listing A.5: The default constructor of the “parabola” individual
parabola : : parabola ()

: eva Ind iv idua l <evaDouble >(1)
{

at (0)−> r e I n i t i a l i z e (−100 . , 100 .) ;
}

Listing A.6: The header file for the parabola individual (parabola.hh)

#i f n d e f PARABOLA HH
#de f i n e PARABOLA HH

#inc l ude ” eva i nd i v i dua l . hh”
#inc l ude ” evadouble . hh”

class parabola
: public eva Ind iv idua l<evaDouble>

{
public :

parabola () ;
double customValue (void) ;

} ;
#end i f / � PARABOLAHH � /

Next, a constructor is needed. In the current example it only has to preload the
evaIndividual<T> with a single evaDouble and initialize it with a suitable value. Listing
A.5 shows how this can be done.

The “1” means, that there will be just one pointer to an evaDouble stored in the
evaIndividual<evaDouble> class. The evaDouble will be initialized using its default
constructor. Unfortunately this also means that it will be initialized with a random num-
ber somewhere in the range of [−1 : 1], which makes this example less interesting. The
evaDouble that was created by the constructor of evaIndividual<evaDouble> can be ac-
cessed as the first element of the STL vector, i.e. with at(0). It can be re-initialized
randomly in another value range using evaDouble’s reInitialize(double mn, double

mx) function.

At this point all necessary steps needed to create an individual suitable for deployment in
the EVA framework have already been done. The resulting header file is shown in listing
A.6.

In the next step a basic population will be created. This is done in main (see listing A.7).

The comments in the source code should provide a sufficient description of what is done
there. One additional detail is the fact that the parabolas created in the beginning are not
deleted in the end. This is done by the evaPopulation<parabola> destructor instead, so
users do not have to care for this.

84 Using the EVA library

Listing A.7: The main() function for the parabola example

#inc l ude ” parabola . hh”
#inc l ude ” evapopulat ion . hh”

int main (int argc , char � � argv)
{

int i ;

// Create a popu la t ion o f parabo la c l a s s e s . . .
evaPopulation <parabola > par ;

// . . . and pre load i t wi th a number o f parabo las .
// Please note t ha t we are using the STL func t ion
// push back () here ! An evaPopulation <parabo la>
// i s b a s i c a l l y a vector<parabo la � > with some
// a d d i t i o n a l code .
for (i =0; i <10; i ++) par . push back (new parabola ()) ;

// Spec i f y the number o f parents . . .
par . setNParents (2) ;
// . . . and the maximum number o f genera t ions
par . setMaxGeneration (1 0 0) ;
// We want succes s r epo r t s a f t e r each genera t ion
par . setReportGen (1) ;

// Now s t a r t the op t imiza t ion cyc l e
par . opt imize () ;

return SUCCESS;
}

With a suitable Makefile the parabola example can now be compiled. A sample Makefile
is shown in listing A.8. It assumes that the EVA library and its header files are stored
below /opt/eva.

The output of the compiled program will look similar to listing A.9.

Please note that some parts of the printout were left out in order to save space, so the out-
put will look slightly different in most cases. What you see is information about the
best individual of each generation. The printout is initiated by the population class
evaPopulation<parabola>, which calls the doInfo() function of the first (i.e. best)
individual in the population in each generation.

Unfortunately, the output looks far from optimal. For example, we would like the parabola
to emit information about its input parameter, and the algorithm has used the default name
“unknown” to denote the individual. So in our next step we’ll add an overloaded version
of evaIndividual<T>’s doInfo() function to the parabola class so it prints out more
suitable information. By the same time the parabola will be given a name, which should
be done in the constructor. See listing A.10 for further information.

Now the output will look similar to listing A.11.

It is normal that the values differ from the first run, as the evaDouble is initialized randomly,
using a different seed for the random number generator for every new run. Being an

A.3 Usage 85

Listing A.8: Makefile for the parabola example
TOPDIR=

�
(PWD)

EVADIR=/opt /eva
INCDIR=

�
(EVADIR)/ in c l ude

LIBFLAGS=−L
�
(EVADIR)/ l i b

CPP = g++

CPPFLAGS = −O2 −Wall − f e x c ep t i on s
INCLUDE = − I

�
(INCDIR) − I

�
(PWD)

LIBS = − l c −lm −lxml2 − l z − l eva

FILES =
�
(TOPDIR)/ main . o \

�
(TOPDIR)/ parabola . o

. cc . o :
�
(CPP)

�
(CPPFLAGS)

�
(INCLUDE) −c

�
<

parabola :
�
(FILES)

�
(CPP)

�
(FILES)

�
(LIBFLAGS)

�
(LIBS) −o parabola

c l ean :
rm − f � . o � ˜ parabola

Listing A.9: Output of the parabola program
In genera t i on : 1
Ind i v i dua l unknown has value 46 .3541
In genera t i on : 2
Ind i v i dua l unknown has value 24 .3591
[. . .]
In genera t i on : 1 0 0
Ind i v i dua l unknown has value 2 .53011 e−06

Listing A.10: Overloaded version of the doInfo() function and new constructor
parabola : : parabola ()

: eva Ind iv idua l <evaDouble >(1)
{

at (0)−> r e I n i t i a l i z e (−100 . , 100 .) ;
setName (” bes t ”) ;

}

void parabola : : doInfo (void)
{

cout
<< ” parabola ” << getName() << ” has value ” << value () << endl
<< ”The input parameter has the value ” << at (0)−> value () << endl ;

}

Listing A.11: Output when using the new doInfo() function
[. . .]
In genera t i on : 1 0 0
parabola bes t has value 7 .89781 e−07
The input parameter has the value 0 .000888696

86 Using the EVA library

-8 -6 -4 -2 0 2 4 6
0

10

20

30

40

50

60

70
|x

1+|2(x+1)

S
ta

rt
 V

a
lu

e

S
in

g
u

la
ri

ty

M
in

im
u

m

O
pt

im
iz

at
io

n
x

y Figure A.1: The plot
shows a function with a
singularity at 0 and a
minimum close to −1.3,
left of the singularity.
Minimization startes
on the right side of the
singularity. The function
is designed to demon-
strate the Evolutionary
Strategies remarkable
ability to bybass even the
most cumbersome local
optima.

optimization package, EVA will converge towards an absolute or local optimum, but will
quite possibly never really reach it. So it is normal that the input parameter is still not
exactly 0. after a hundred generations.

A.3.3 Restricting the value range

In the next step a local parameter will be added to the parabola class in order to allow a
meaningful discussion of the conversion of individuals to and from XML. Furthermore some
additional functionality of the evaDouble class will be shown. To do this, a 5 dimensional
function f(~x) =

∑5
i=1((xi + 1)2 + | 1

xi
|) will be used, with a minimum close to −1.3 and

a singularity at 0 in each dimension, instead of a simple, one-dimensional parabola. This
means that 5 input parameters are needed instead of 1. Picture A.1 shows the function
for the one-dimensional case.

The joint start value for all 5 input parameters will be stored in a private double variable.
Start values should be adjustable via the setStartValue() function that must be imple-
mented. The new class declaration can be found in listing A.12. You will find that it has
now been changed to include the “usual” functions of a class (e.g. a copy constructor and
an operator=()) plus some functions particular to the EVA library. The new functions
and functionality will be introduced along the way.

We will begin with the constructor (see listing A.13). By default. the optimization will use
a start value of (5., 5., 5., 5., 5.) in our case, which means that the minimization procedure
has to “jump” over the singularity in order to get close to the absolute minimum. It would
be good to be able to avoid potential problems related to the singularity7, so a small value

7such as a division by 0

A.3 Usage 87

Listing A.12: Class declaration for parabola individual with an added singularity
class parabola

: public eva Ind iv idua l<evaDouble>
{
public :

parabola () ;
parabola (const parabola &);
˜ parabola () ;

void c l e a r a l l (void) ;

void operator=(const parabola &);

double customValue (void) ;
void doInfo (void) ;

s t r i n g convertToXMLCore (void) ;
void loadFromXMLCore(xmlNodePtr) ;

void s e tStar tVa lue (double) ;

private :
double s ta r tVa lue ;

} ;

Listing A.13: The constructor of the new parabola individual
const int parS i ze =5;

parabola : : parabola ()
: eva Ind iv idua l <evaDouble >(parS i ze)

{
int i ;

// I n i t i a l i z e the s t a r t va lue , so
// we know where to s t a r t .
s ta r tVa lue =5. ;

for (i =0; i<parS i ze ; i++){
// Res t r i c t the search area to [−8 ,8 .]
at (i)−>setClosedBoundar ie s (−8 . , 8 .) ;
// Add a gap around 0 so we don ’ t tap
// in to the s i n g u l a r i t y
at (i)−>setGap (−0 .001 ,0 .001) ;
// Set the s tep width and i t s adap ta t ion
at (i)−>setSigma (0 . 8) ;
at (i)−>setSigmaSigma (0 . 0 0 8) ;
// And prov ide a s t a r t va lue

� at (i)=star tVa lue ;
}

setName (” bes t ”) ;
}

88 Using the EVA library

range around the singularity will be excluded from the calculations. This is done by adding
a gap to the value range of the evaDouble using the evaDouble::setGap() function.
Crucial for the success of the optimization is the choice of the sigma parameter (set using
evaDouble::setSigma()) used in the mutation of all input variables. If it is too small,
variations of the evaDouble parameters won’t succeed in getting beyond the singularity,
whose effect is limited to a range of roughly ±1 around its middle value 0. If sigma is too
large (e.g. : larger than the value range of each evaDouble), variations of each parameter
resemble random jumps in the input space. In our experience, sigma shouldn’t be larger
than about 10% of the search area (i.e. sigma <= 1.6 in our case) and should be the
smaller the finer the structures are that are being explored. The EVA library implements
a dynamic adaptation of sigma (steered by the size of the “sigmasigma” parameter, set
using evaDouble::setSigmaSigma()). However, in some cases this algorithm won’t be
able to adapt sigma quickly enough, especially if the topology of the quality surface of
customValue() changes quickly. The effect of an inappropriate sigma is a stagnation in
the quality improvement of individuals8. Unfortunately if - unlike our example - the exact
location of the optimum isn’t known, it is not always possible to distinguish this from the
case where the absolute minimum has been found. See further below for a suggestion to
overcome this problem.

The explanation of the fitness calculation and the creation of the doInfo() function will
be skipped here, as it has already been explained in detail for the simple parabola above.
It should also be clear how to write a setStartValue() function9 so it won’t be discussed
in detail here either.

The operator=() function should be mentioned, however, as it shows how to make sure
the parent classes’ data is copied the way it is meant to be copied. This function can be
found in listing A.14. The copy constructor is shown alongside operator=() in order to
show their similarity. Similarly, the same listing shows how to clear or reset the internal
data structures, either using the destructor or the clearall() function. Its services can
be used by the destructor. In order to make sure that all data structures are cleared,
clearall() needs to call the parent classes’ clearall() function.

A.3.4 XML generation

Much more important than these, however, are the two functions loadFromXMLCore()

(listing A.16) and convertToXMLCore() (listing A.15). They are part of the framework
which is used to parallelize Evolutionary Algorithms in the EVA library and are also used
to store and load intermediate results.

8This is only true for the most common selection mechanism, where new parents are selected from both
parents and children. Compare figure 3.1

9Please note that this function needs to re-initialize the parabola’s evaDouble parameters with
startValue.

A.3 Usage 89

Listing A.14: Copying and clearing data structures

/ � /
// The copy cons t ruc tor
parabola : : parabola (const parabola& cp)

: eva Ind iv idua l<evaDouble >(cp)
{

s ta r tVa lue=cp . s ta r tVa lue ;
}

/ � /
// The de s t ru c t o r makes in an EVA ind i v i d u a l u sua l l y uses
// the s e r v i c e s o f the c l e a r a l l () func t ion .
parabola : : ˜ parabola ()
{

parabola : : c l e a r a l l () ;
}

/ � /
// Make sure s tar tVa lue and eva Ind i v i dua l are copied the
// way we want i t .
void parabola : : operator=(const parabola& cp)
{

s ta r tVa lue=cp . s ta r tVa lue ;

// l e t e va Ind i v i dua l handle the r e s t
eva Ind iv idua l<evaDouble > : :operator=(cp) ;

}

/ � /
// Reset/ c l e a r i n t e r n a l data s t r u c t u r e s
void parabola : : c l e a r a l l (void)
{

// r e s t o r e the o r i g i n a l va lue
s ta r tVa lue =5. ;
// c l e a r evaInd iv idua l <evaDouble > data s t r u c t u r e s
eva Ind iv idua l<evaDouble > : : c l e a r a l l () ;

}

Listing A.15: Converting a parabola object to XML

s t r i n g parabola : : convertToXMLCore (int o f f s e t , int addOffset)
{

os t r ings t r eam r e s u l t ;

r e s u l t
<< blanks (o f f s e t) << convertVarToXML(startValue , ” s ta r tVa lue ” , ””)
<< blanks (o f f s e t) << ”<eva Ind iv idua l>” << endl
<< eva Ind iv idua l<evaDouble > : : convertToXMLCore (o f f s e t , addOffset)
<< blanks (o f f s e t) << ”</eva Ind iv idua l >” << endl ;

return r e s u l t . s t r () ;
}

90 Using the EVA library

Listing A.16: Loading a parabola object from XML
void parabola : : loadFromXMLCore(xmlNodePtr xp)
{

xmlNodePtr node = xp ;

while (node != NULL){
i f (nodeHasName (node , ” s ta r tVa lue ”))

s ta r tVa lue=dGetProperty (node , ””) ;
else i f (nodeHasName (node , ” eva Ind iv idua l ”))

eva Ind iv idua l<evaDouble > : : loadFromXMLCore(node−>ch i l d r en) ;

node=node−>next ;
}

}

In EVA terminology, a “core” XML description is XML code without the outermost en-
velope. As it is not clear who initiates the XML generation (quite often this is done by
the evaPopulation class or a class derived from the current class), it is not clear what
the name of the envelope will be. So it is up to the calling class to create the envelope,
while the class whose convertToXMLCore() function is called contributes the content. The
calling class also determines how many blanks should be inserted in front of the XML
description in order to create formatted output.

With this information it should now be possible to understand listing A.15. There is
one local parameter, and users need to care for its conversion to XML themselves. For
basic types like double, long, etc., this is done with the convertVarToXML() family of
functions. They are defined in the evaMember class. More information about them can
be found in the reference documentation. An excerpt from the XML code created by
convertToXMLCore() can be found in listing A.18.

Users need to take care to initiate the XML conversion of a parent class. It has its own copy
of the convertToXMLCore() function and, in turn, takes care of the conversion of its parent
class (evaMember) to XML. However, an envelope around the core XML description of the
evaIndividual<evaDouble> class must be added. Again see listing A.15 for information
on how this is done. The recursive way in XML description of classes are created makes
sure that the user has to invest but minimal effort into the creation of the XML code. It
should be pointed out that the user does not have to care for the creation of XML code
for the evaDouble objects stored in the parabola object. This is done automatically by
the evaIndividual<evaDouble> class. In convertToXMLCore(), a string containing the
whole core XML code of the class (including that of its parent classes) is returned and can
be processed further by the calling class.

Just like convertToXMLCore(), loadFromXMLCore() (see listing A.16) uses its parent
classes’ version of the loadFromXMLCore() function to do most of the job of loading an
XML description. Starting with a node (a data structure from the GNOME foundations
libxml2 package) of an XML tree, this function checks for those XML tags that were cre-
ated in convertToXMLCore() (see listing A.15). If found, it either reloads the parameter

A.3 Usage 91

associated with this name from XML (like in the case of “startValue”) or it hands over an
xmlNodePtr to the loadFromXMLCore() function of its parent class (or the objects stored
in a vector in the case of a container class). Please note that loading of the evaDouble’s
XML code is already handled by the evaIndividual<evaDouble> class.

An xmlNodePtr is really a linked list, and so it is possible to get access to the next node
using the node=node->next construct. Two functions help with the scanning of the XML
tree. nodeHasName() helps to check whether a given node has the desired name. The
[x]GetProperty() (with [x]=d for double, l for long, etc.) family of functions helps to
convert XML descriptions of basic types to their real-world counterparts10. These functions
implement the reverse action to the convertVarToXML() family of functions. Again, see
the detailed description in the evaManual chapter of the reference manual for further
information.

A.3.5 Loading and saving a population

Now that it was shown how to convert individuals to XML it is also possible to make
disk copies of our population during the optimization. This also allows to reload
an XML description, should it be necessary to continue searching for optima after
a first run was finished. In order to do this it is necessary to slightly modify the
main() function (see listing A.17). Safety copies can be initiated using the function
evaPopulation<S>::setSaveTurn(long st). The parameter st specifies the number of
generations, after which a copy of the population should be made. Internally this is done
using the evaMember::saveFile(const char *fn) function, which is also accessible to
the user to save an XML description of arbitrary classes derived from the evaMember
class to a file with filename fn. Please note, however, that in order to use this function
your class needs to implement a local version of convertToXMLCore(). By default, EVA
uses the name evadefault.xml for the safety copies. You can set the name using the
function evaMember::setSaveFile(const char *). You can reload the file using the
evaMember::loadFile(const char *) call. In listing A.17 this mechanism is used to
commence training after a first run was finished.

In order to do this, with the main() function of A.17, a user only has to specify the name
of a safety copy generated using evaMember::saveFile() on the command line. Please note
that only minimal error checking is implemented in this example in the main() function.
The loadFile() function itself implements some error checking, though, and returns a
boolean value “true” if loading was successful, “false” otherwise.

Listing A.18 shows an excerpt of the XML code that was generated for our parabola
class. The whole XML description has a size of below 150 kilobytes. In the XML code,
you will find two tags with the name evaIndividual. This is just a consequence of the
fact that both the population and the parabola objects stored in it are derived from

10Both nodeHasName() and [x]GetProperty() are implemented in the evaMember class.

92 Using the EVA library

Listing A.17: Initiating safety copies from main()

int main (int argc , char � � argv)
{

// [. . .] Code pr ior to t h i s l i n e erased to save space

// How of ten do we want to make s a f e t y cop ie s o f our
// popu la t ion ? Every 100 genera t ion !
par . setSaveTurn (1 0 0) ;

// I f the f i lename o f a s a f e t y copy
// was provided by the user , load i t
// in to the popu la t ion .
i f (argc==2){

i f (! par . l o adF i l e (argv [1])) {
cout << ” Error : could not load f i l e ” << argv [1] < < endl ;
exit (1) ;

}
}

par . opt imize () ;

return SUCCESS;
}

the evaIndividual<T> class. As each layer’s nodes are processed by a different classes’
loadFromXMLCore() function, there are no clashes with regards to the names being used.

A.3.6 Changing parameters of a population

Of course this mechanism can be used to selectively change parameters, after the XML
description of a population was loaded. All that needs to be done for this is to call the
corresponding functions after the XML description was loaded. In our example, this could
be done by modifying the section next to loadFile() in listing A.17. Listing A.19 shows
how this can be done.

Again, this example makes extensive use of the STL features of the EVA library. Both
the parabola class and the evaPopulation<S> class are “just” extensions of the STL
vector<T> class, so its functions can be used. For example, it is possible to ask for the
size of a population using the vector<T>::size() function and the same can be done for
the parabola, whose size is needed to determine the number of evaDouble object pointers
stored in it. Furthermore, access to the parabola objects stored in the population is
possible using the STL (and array) par[i] construct. For practical reasons, however, the
STL function at(j) is used to do the same for the parabola objects in our example.

A.3 Usage 93

Listing A.18: Excerpt from the XML code generated by evaMember::saveFile()

<saveF i l e >
<genera t i on va l=”1000”/>
<maxGeneration va l=”1000”/>
<r epor tgen va l=”10”/>
<saveturn va l=”100”/>
<se lectMethod va l=”1”/>
<recombineMethod va l=”0”/>
<maximize va l=” f a l s e ”/>
<t r a ckRee l e c t i on va l=” f a l s e ”/>
<hname va l=”dh−152−03”/>
<dname va l=”ep1 . ruhr−uni−bochum . de”/>
<eva Ind iv idua l>

<component pos=”0”>
<s ta r tVa lue va l=”5”/>
<eva Ind iv idua l>
<component pos=”0”>

<iValue va l=” −1.31615 ”/>
<sigma va l=” 0.0798139 ”/>
<sigmasigma va l=” 0.0008 ”/>
<sigmaMutateMethod va l=”1”/>

[. . .]

Listing A.19: Modifying parameters after loading a safety copy in main()

// [. . .]
// I f the f i lename o f a s a f e t y copy
// was provided by the user , load i t
// in to the popu la t ion .
i f (argc==2){

// Can i t be loaded ? Emit an error i f not
i f (! par . l o adF i l e (argv [1])) {

cout << ” Error : could not load f i l e ” << argv [1] < < endl ;
exit (1) ;

}
else {

// Find out about the s i z e o f the popu la t ion
// Please note t ha t we ’ re using p l a i n STL
// func t i on s f o r t h i s .
int popSize=par . s i z e () , parS i ze =0;

// Let ’ s t r y a sma l l e r sigma and sigmasigma
// f o r each evaDouble
for (i =0; i<popSize ; i++){

parS i ze=par [i]−> s i z e () ;

for (j =0; j<parS i ze ; j++){
par [i]−>at (j)−>setSigma (0 . 0 8) ;
par [i]−>at (j)−>setSigmaSigma (0 . 0 0 0 8) ;

}
}

}
}
// [. . .]

94 Using the EVA library

A.3.7 Multi-populations

In the EVA library, evaPopulation<T>s are a superset of the evaIndividual<T> class.
They can thus be used as individuals and compete against each other within a super-
population. Apart from memory and computing time restrictions, there are no limitations
to the depth of such “multi-populations”, i.e., the competing populations could themself
be super-populations, and so on.

Most of the framework needed to build multi-populations is already in place. All remaining
modifications of our example program can be done in main(). Listing A.20 shows in a few
simple steps how a multi-population is set up. As the code is extensively documented and
should be self-explanatory, only a few special features will be discussed below.

The super-population is created by using a population as a template parameter.
If the population is an evaPopulation<parabola>, the super-population is of type
evaPopulation<evaPopulation<parabola> >. C++ requires that, if a template param-
eter is itself a templatized object, there must be a space between the two concluding “>”
signs. If it is omitted, the parser will emit an error message. A super-super population
could accordingly be set up as evaPopulation<evaPopulation<evaPopulation<parabola
> > >. Please note that up until this point the populations at all levels have no members.
Internally, e.g. the evaPopulation<parabola> is just a vector<parabola *> of size 0
with some additional code. So the populations need to be filled with members, which is
done in the for-loops (see e.g. listing A.20).

The destructor of the evaPopulation class takes care of deleting the individuals stored
in it. As a direct consequence, memory for these individuals needs to be allocated using
the C++ new call. For this reason the member populations of the super-population are
created as pointers rather than values.

Just like in the case of a basic population, optimization of multi-populations is started
using the call superpar.optimize().

A.3.8 Parallelizing populations

Parallelization in the EVA framework is done on the level of populations. Any population
can be parallelized, be it a basic population, a super-population or a population at an
even higher level. All that needs to be done is to derive one of currently two parallel
“personalities” from a population. The population that should be parallelized is specified
as a template parameter to the parallel population. Most of the functionality is thus
provided by the parent population, the “parallel” population only adds the parallelization
framework. As a direct consequence, users, whose duty it is only to provide suitable
individuals, do not need to change their individual’s code in oder to benefit from parallel
execution. This greatly simplifies debugging of user code, as it can be done using a serial
population, without the complications usually associated with the debugging of parallel

A.3 Usage 95

Listing A.20: Setting up multi-populations in main()

#inc l ude ” parabola . hh”
#inc l ude ” evapopulat ion . hh”

int main (int argc , char � � argv)
{

int i , j ;

// An evaPopulation <parabo la > has the same i n t e r f a c e as an i n d i v i d u a l .
// So we can make i t an i n d i v i d u a l in the same way we ’ ve done i t f o r
// the parabo la c l a s s i t s e l f . Note the b lank between the two > > . I t
// i s needed i f two template c l a s s e s are nested . Otherwise you ’ l l g e t
// errors from the parser .
evaPopulation <evaPopulation <parabola > > superpar ;

for (i =0; i <10; i++){
// This par t i s s im i l a r to a ba s i c popu la t ion . The only d i f f e r e n c e
// i s t ha t we use po in t e r s . They are needed because the super popu la t ions
// de s t ru c t o r w i l l d e l e t e them when the super popu la t ion i s des t royed .
evaPopulation <parabola > � par = new evaPopulation <parabola >() ;

// Add parabo las to the sub−popu la t ion .
for (j =0; j <10; j ++) par−>push back (new parabola ()) ;

// We’ l l use a sma l l e r number o f genera t ions
par−>setNParents (2) ;
par−>setMaxGeneration (1 0 0) ;
// We want the super−popu la t ion to do the t a l k i n g
par−>setReportGen (0) ;

// Add the sub−popu la t ions to super−popu la t ion
superpar . push back (par) ;

}

superpar . setNParents (2) ;
// Only few genera t ions are needed
superpar . setMaxGeneration (1 0) ;
// Emit information a f t e r every genera t ion
superpar . setReportGen (1) ;

// Loading and savomg can be done in the same way as f o r
// ba s i c popu la t ions
superpar . setSaveTurn (1) ;

// I f the f i lename o f a s a f e t y copy
// was provided by the user , load i t
// in to the popu la t ion .
i f (argc==2){

// Can i t be loaded ? Emit an error i f not
i f (! superpar . l o adF i l e (argv [1])) {

cout << ”Error : could not load f i l e ” << argv [1] < < endl ;
exit (1) ;

}
}

// superpar has an opt imize () func t ion j u s t
// l i k e any o ther popu la t ion . In f a c t superpar
// has the same code as a ba s i c popu la t ion .
superpar . opt imize () ;

return SUCCESS;
}

96 Using the EVA library

Listing A.21: Setting up multi-populations in main()

#inc l ude ” parabola . hh”
#inc l ude ” evapopulat ion . hh”
#inc l ude ” evapthreadpopu lat ion . hh”

int main (int argc , char � � argv){
// The ba s i c i n d i v i d u a l s and the popu la t ion to be p a r a l l e l i z e d
// are s p e c i f i e d as template parameters
evaPthreadPopulation <parabola , evaPopulation <evaPopulation <parabola > > > superpar ;

// [. . .] The r e s t o f the code remains unchanged , so we do not show i t here .
}

code.

If parallelization is done for a basic population, users should take into account the overhead
created by generating and parsing the XML representations of individuals and by sending
them over a network. Where the time needed for this is small compared to mutation and
value calculation, significant speed-ups can be achieved over sequential execution. For this
reason, the parallelization is done on the example of a multi-population. The procedure,
however, is just the same for basic population. Simply provide the population class to be
parallelized as a template parameter. In addition to this the parallel personality needs to
know about the type of the individuals that are stored as the lowest level of our optimization
framework. In our example this is the parabola class. Again a template parameter is used
to tell the parallel population personality about it. Listing A.21 shows how to parallelism
a population using the POSIX thread personality. As the rest of the main function
remains unchanged compared to listing A.20, only the one relevant line is shown. It
can be seen that, from the users perspective, setting up a parallel population is almost
trivial.

A.3.9 Using different parallel personalities

Apart from the POSIX thread personality evaPthreadPopulation<S,T> there is also a
version that makes use of the MPI library for parallelization. It relies heavily on the
generation and parsing of XML representations of classes derived from evaMember. Setup
of the MPI personality is very similar to the POSIX thread personality, so it will not
be explained in detail here. From a users’ perspective, the only real difference between
evaPthreadPopulation<S,T> and evaMPIPopulation<S,T> is that the latter needs to
receive the main() functions command line parameters int argc and char **argv, as
the MPI implementation MPICH relies on them. Usage of MPI programs is explained e.g.
in the MPICH manual [MPICH].

Instead of going into detail about the evaMPIPopulation class, a main() function (listing
A.22) and a Makefile (listing A.23) are shown that allow to switch between the serial,
multi-threaded and MPI personality simply by uncommenting the appropriate lines in the

A.3 Usage 97

Listing A.22: Switching between parallel personalities in main()

[. . .]
#i f d e f USEPTHREAD
#inc l ude ” evapthreadpopu lat ion . hh”
#end i f

#i f d e f USEMPI
#inc l ude ” evampipopulat ion . hh”
#end i f

int main (int argc , char � � argv)
{

int i , j ;

#i f d e f USESERIAL
evaPopulation <evaPopulation <parabola > > superpar ;
#end i f

#i f d e f USEPTHREAD
evaPthreadPopulation <parabola , evaPopulation <evaPopulation <parabola > > > superpar ;
#end i f

#i f d e f USEMPI
evaMPIPopulation<parabola ,

evaPopulation <evaPopulation <parabola > > > superpar (argc , argv) ;
#end i f

// [. . .] The r e s t o f the code remains unchanged , so we do not show i t here .
}

Makefile. Again, the main() function is unchanged compared to listing A.20, so only
those lines are shown that have been changed.

As is obvious from the Makefile shown in listing A.23, if the lines associated with the
POSIX thread personality are uncommented, the -DUSEPTHREAD definition is activated
and the evaPthreadPopulation<S,T> section of the main() function becomes active. The
serial and MPI personalities are handled similarly.

A.3.10 Restrictions of the parallelization

There are only relatively few restrictions to the individuals being stored in a parallelized
population. First, they must be independent of each other, i.e., during the course of the
value calculation and mutation there may be no exchange of data between them. This is
usually no restriction, as value calculation and mutation are atomic actions in most cases.
However, global parameters must be avoided. Where there is an exchange of data between
individuals or global variables are being used, a user has to take care of synchronization of
the customValue() and customMutate() functions himself. However, again, this is not a
restriction for most applications.

Please note, that this is also no restriction for (user- or pre-defined) recombination and
duplication schemes, which of course require “interaction” between individuals, as this

98 Using the EVA library

Listing A.23: Switching between parallel personalities (Makefile)
TOPDIR=

�
(PWD)

INCDIR=/opt / eva/ i n c l ude

CPP = g++

INCLUDE = − I
�

(INCDIR) − I
�

(PWD)

Use these s e t t i n g s f o r s e q u en t i a l execu t ion
CPPFLAGS = −O2 −Wall − f e x c ep t i on s −DUSESERIAL
LIBS = − l c −lm −l xml2 − l z − l e v a
LIBFLAGS=−L/opt /eva/ l i b

Use these s e t t i n g s f o r the MPI pe r sona l i t y
CPPFLAGS = −O2 −Wall − f e x c ep t i on s −I /where/mpich/ r e s i d e s / inc lude −DUSEMPI
LIBS = − l c −lm −l xml2 − l z − l e v a − lmpich
LIBFLAGS=−L/opt /eva/ l i b −L/where /mpich/ r e s i d e s / l i b

Use these s e t t i n g s f o r the pthread pe r s ona l i t y
CPPFLAGS = −O2 −Wall − f e x c ep t i on s −DUSEPTHREAD
LIBS = − l c − l p thread −lm −lxml2 − l z − l eva
LIBFLAGS=−L/opt /eva/ l i b

FILES =
�
(TOPDIR)/ main . o \

�
(TOPDIR)/ parabola . o

. cc . o :
�
(CPP)

�
(CPPFLAGS)

�
(INCLUDE) −c

�
<

parabola :
�
(FILES)

�
(CPP)

�
(FILES)

�
(LIBFLAGS)

�
(LIBS) −o parabola

c l ean :
rm − f � . o � ˜ parabola

A.4 Consistency Checks 99

functionality is handled by the server process or thread rather than the clients.

The XML code equivalent to the super population superpar from listing A.20 has of course
grown in size, to over 1.7 megabytes. While this is no real restriction, users that want to
use super-populations as sub-populations of a “super-super” population should be aware
of the size of the code that is generated. One potential problem is the size of the receive
buffer in an MPI population, which is predefined to be 1 megabyte. So in the case of a
super-super population similar to our example you would have to modify the size of the
buffer to benefit from parallelization. You can change the size of the buffer by using the
define switch -DBUFSIZE=<buffersize in bytes> during compilation. This can be done
by modifying the CPPFLAGS section of listing A.23.

A.4 Consistency Checks

A few of the consistency checks used during the development of the EVA library will be
shown below.

A.4.1 Random Numbers

Evolutionary Algorithms heavily depend on the generation of random numbers. The EVA
library currently uses the Mersenne Twister algorithm, that was implemented in the MTRand
class by Richard Wagner, based on code by Makoto Matsumoto, Takuji Nishimura, and
Shawn Cokus [MAT98]. MTRand’s period, 219937 − 1, and its order of equidistribution, 623
dimensions, are far greater than is common for other random number generators.

The MTRand class is distributed under the GNU Lesser General Public License (see [LGPL])
and can thus be used freely in the EVA library11.

EVA implements random numbers with a gaussian probability density function (PDF)12

on top of MTRand, using an algorithm described in detail in section A.4.2 below.

In order to show their characteristics, gaussian random numbers with two different sets of
mean and sigma (0./0.5 and 6/2.) were filled into a ROOT histogram. The function

f(~p, x) = p0 ∗ e−0.5∗((x−p1)/p2)2 + p3 ∗ e−0.5∗((x−p4)/p5)2 (A.1)

was fitted to the random distribution using the means provided by the ROOT object oriented
analysis framework (see [ROOT] for further information). Picture A.2 shows, that already
for a relatively low statistics the original values of (mean/sigma) are reproduced by the
fit reasonably well.

11Future versions of MTRand are likely to be distributed under an even more open license, imposing
almost no restrictions on users at all

12Henceforth these will be called “gaussian random numbers”

100 Using the EVA library

-2 0 2 4 6 8 10 12
0

50

100

150

200

250
 0

.0
0

3
6

2
±

 =
 0

.0
0

3
6

9

µ

 0.00275± = 0.4971 σ 0
.0

0
4

5
5

±
 =

 6
.0

2
5

µ

 0.0121± = 1.952 σ

Figure A.2: Function
A.1 was fitted to gaus-
sian random numbers
with two different sets of
mean/sigma (0./0.5 and
6./2.). Their values, as
reproduced by the fit, are
shown in the picture.

A.4.2 Generating random numbers with a gaussian Probability
Density Funtion (PDF)

A crucial point in Evolutionary Algorithms is the generation of random numbers. Evolu-
tionary Strategies, in particular, require random numbers with a gaussian PDF, such as
the ones shown in picture A.2. They can be obtained from random numbers with a uniform
distribution on [0, 1[using the following procedure:

One can obtain random numbers with a known distribution f(x) by calculating the inverse
of the function

F (x) =
∫ x

−∞
f(x′)dx′ (A.2)

The application of F−1(x) to random numbers with a uniform distribution on [0, 1[yields
random numbers distributed according to f(x). Unfortunately, for the gaussian distribu-
tion, F (x) cannot be calculated analytically.

A little “trick” helps to find a way out of this dilemma. Let’s assume that a set of random
numbers with a gaussian PDF already exists. It will have the density

f(x)dx =
1√
2π
e−

x2

2 dx (A.3)

This distribution is now “smeared” along the y-coordinate with a second gaussian distri-
bution, resulting in the 2-dimensional density

g(x, y) =
1

2π
e−

x2+y2

2 dxdy (A.4)

or, in polar coordinates

g(r,Φ) =
1

2π
re−

r2

2 drdΦ (A.5)

A.4 Consistency Checks 101

A two dimensional random vector can be obtained using the assumption that Φ is dis-
tributed uniformly on [0, 2π[, while r is distributed according to

h(r)dr = re−
r2

2 dr (A.6)

in [0,∞[. In contrast to equation A.3, however, it is possible to calculate function A.2 for
h(r) :

H(r) =
∫ r

0
h(r′)dr′ = 1 − e−

r2

2 (A.7)

with the inverse

H−1(r) =
√

−2ln(1 − x) (A.8)

Two independent, gaussian random numbers can then be obtained with the help of two
random numbers X1 and X2 with a uniform distribution on [0, 1[by projecting equation
A.8 onto the x- and y-axis.

Y1 =
√

−2ln(1 −X1) cos(2πX2) and Y2 =
√

−2ln(1 −X1) sin(2πX2) (A.9)

Gaussian random numbers with any desired mean µ and width σ can then be obtained by
stretching and scaling equations A.9 :

Y = σ
√

−2ln(1 −X1)sin(2πX2) + µ (A.10)

A.4.3 External vs. Internal representation of an evaDouble

As was described in section 4.4.2, the EVA library’s evaDouble class implements the transi-
tion from the internal to an external representation of a double value, which can optionally
be restricted to a certain value range and have gaps in this range. The following examples
try to reproduce the transition described in picture 4.2.

With boundaries

In the first example a lower boundary at -0.5 and an upper boundary at 1.5 was added
to the value range of an evaDouble. Picture A.3 shows the external representation of an
evaDouble, as a function of the internal, continuous, representation.

Adding gaps

In the next step, two gaps at [−0.1 : 0.3] and [0.7 : 0.9] where added to the (external) value
range of picture A.3. Picture A.4 shows the resulting mapping from internal to external
representation.

102 Using the EVA library

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

1.5

2

Lower Boundary

Upper Boundary

Internal, continous representation of evaDouble

E
x
te

rn
a
l
re

p
re

s
e
n

ta
ti

o
n

Figure A.3: The inter-
nal, continuous represen-
tation of an evaDouble

is mapped to the exter-
nal representation, whose
value range is limited to
[−0.5 : 1.5].

A.4.4 Training Feed-forward Neural Networks

An implementation of Feed-forward Neural Networks (FFNN) was created as an
extension to the EVA library. Each layer of a network is implemented us-
ing an evaIndividual<evaDouble>, so a network can be represented as an
evaIndividual<evaIndividual<evaDouble> >.

Training a FFNN means adapting the weights associated to each node in such a way that,
during supervised learning, for a given input sample the deviation of the actual from the
desired output becomes minimal. In other words, training a FFNN means minimizing
function A.11,

E(~w) =
1

2

p
∑

ν=1

∑

k

(yν
k − sk(x

ν))2 (A.11)

where ~w are the weights, p is the total number of input/output patterns used in supervised
training, k are the output nodes, yν

k is the actual output of each output node as a result
of input pattern xν , and sk(x

ν) is the desired output associated to xν. As searching for
minima and maxima of high-dimensional functions is the prime domain of Evolutionary
Strategies, they can also be used to train FFNNs. See also [RBDP95] and [RBNN95] for
further information on training feed-forward neural networks using Evolutionary Strategies.

Both FFNN’s with sigmoidal and radial-basis transfer functions have been implemented
within this library (libFfn). Training patterns and network geometries can be loaded
using a simple XML based format. When the training is finished, the trained network is
stored as a C++ function, which can be easily used in custom projects. Using the means
of the EVA library, training can also be done in parallel. Picture A.5 shows the resulting

A.5 Interfacing the EVA library to ROOT and PAW 103

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

1.5

2

Lower Boundary

Upper Boundary

Internal, continous representation of evaDouble

E
x
te

rn
a
l
re

p
re

s
e
n

ta
ti

o
n

Gap

Gap

Figure A.4: Two gaps
were added to the value
range of picture A.3.
Gaps are reflected as a
different transfer func-
tion mappingthe internal
to the external represen-
tation of an evaDouble.

class hierarchy.

As libFfn is entirely based on the EVA library, trying to use a network trained with this
algorithm to recognize a training pattern is a thorough test of the EVA library. In the
following example, libFfn had to distinguish between two two-dimensional sets of input
patterns. One was distributed along the x- and y-axis, the other was distributed evenly in
[0 : 1]/[0 : 1].

Picture A.6 shows the first set and, plotted on top of it, the output of the trained “2−2−1”
network13 for selected points of the input region. It is clearly visible that the network is
able to distinguish between both patterns.

A.5 Interfacing the EVA library to ROOT and PAW

Today the most common analysis frameworks in particle physics research are ROOT and
PAW, with PAW slowly phasing out. Particle physicists will usually extract only those data
portions from the raw events coming from the experiments that are of direct importance
to their analysis. It is a common procedure to store this data in PAW or ROOT ntuples or
trees14. This decreases the amount of data to be analyzed from hundreds of terabytes to
several gigabytes and is indeed the only reason why the vast amount of data coming from
particle physics experiments is manageable. After all it is usually necessary to loop more

13A network with 2 input-, 2 hidden and 1 output node. The output is scaled by a factor of 10 and
rounded to the next lower integer.

14In ROOT terminology a tree is a collection of datasets, each of them assembled from the same amount
of basic types and higher-level objects. An ntuple is a tree that can only hold floating point values

104 Using the EVA library

evaIndividual<evaIndividual<evaDouble> >

ffnetwork

sigmoidFfn rbFfn

Figure A.5: The class hier-
archy used in libFfn. The
library is built on top of the
EVA framework.

than once over a dataset to perform an analysis.

In order to facilitate the deployment of the EVA library in Particle Physics, it was a key
requirement to allow the easy access to the analysis means provided by ROOT and Paw.
In the case of the ROOT framework, two preferred possibilities exist :

� The first and easiest method of interaction is through ROOT scripts. A special class
evaRootIndividual has been developed that integrates a ROOT interpreter into
the EVA framework. The population class evaRootPopulation takes care that the
ROOT interpreter is initialized properly. It is also able to set up the entire opti-
mization scheme using information stored in a simple, XML-based configuration file.
Listing A.24 shows such a configuration file. Apart from setting up the “geometry”
of the population, it is possible to specify parameters for the parent individuals,
including values and boundaries for each evaDouble.

Users write scripts for this interpreter and test it in their native analysis environ-
ment. These scripts can then be used almost verbatim in conjunction with the
evaRootIndividual object. The name of the script can be specified in the XML
configuration file. Listing A.25 shows a simple evaluation script. The interpreter is
called from the customValue() function of evaRootIndividual. The ROOT script
gets access to the evaRootIndividual’s parameters and returns a single double

value representing the quality or fitness of this parameter set.

Listing A.26 shows a simplified main() function that can be used to set up an
evaRootPopulation.

There are two disadvantages to this method :

– It can only be used in conjunction with the evaMPIPopulation and

A.5 Interfacing the EVA library to ROOT and PAW 105

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input and output of feedforward neural network (2-2-1)

8

8

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

8

8

7

7

7

7

7

7

7

7

7

7

7

7

8

8

8

8

8

8

7

7

7

7

6

6

6

6

6

6

6

6

6

6

8

8

8

8

8

7

7

6

6

5

4

4

4

4

4

3

3

3

3

3

8

8

8

8

7

7

6

5

3

2

2

1

1

1

1

1

1

1

1

1

8

8

8

7

7

6

4

2

1

1

0

0

0

0

0

0

0

0

0

0

8

8

7

7

6

4

2

1

0

0

0

0

0

0

0

0

0

0

0

0

8

8

7

7

5

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

8

7

7

6

4

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

8

7

7

5

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

7

5

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

4

2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

4

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

4

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

4

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

7

7

6

3

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Figure A.6: Input pattern
used to train a 2-2-1 net-
work (an even distribu-
tion of input values and
a distribution confined to
the x- and y-axis) and
the output of the network
after the training (num-
bers).

evaPopulation. Usage in multi-threaded environments is not possible due to
the usage of global variables in the ROOT interpreter.

– The ROOT interpreter tries to load shared libraries. These must comply with
the environment the EVA application was compiled in, as otherwise the symbol-
table of the executable doesn’t fit the dynamic libraries, resulting in error-
messages from the ROOT interpreter. Consequently one should run an eva-
RootPopulation on a cluster with a similar version of Linux/Unix as the one
the application was compiled on.

There is only a small performance penalty in using ROOT scripts instead of compiled
functions, as ROOT has the ability to compile ROOT scripts on the fly when they
are first loaded15.

� ROOT commands are also accessible as part of ROOT’s library of C++ classes and
can be integrated as function calls directly into an application without the need to
interface with the interpreter. This method has the advantage to yield the fastest
execution, but lacks flexibility, as changes in the code require recompilation of the
application.

Interaction with PAW is done by calling the PAW interpreter in batch mode using the
C call system("paw -b samplescript.kumac") and Kumac scripts. A similar method

15Simply add a “+” after the name of the script in listing A.24.

106 Using the EVA library

Listing A.24: Setting up an evaRootPopulation with an XML input file
<rootPopu la t i on nPop=”10” nPar=”1” maxGen=”40” saveTurn=”1” maximize=” true ”>

<r o o t I nd i v i dua l nVar=”4” roo tS c r i p t=” ph ip i . cc ”>
<evaDouble va l=” 1 .3 ” name=”pcmscut ”>
<lower va l=” 1 . ” isOpen=” f a l s e ” i sAc t i v e=” true ”/>
<upper va l=” 2 . ” isOpen=” f a l s e ” i sAc t i v e=” true ”/>
<sigma va l=” 0.052 ”/>
<sigmasigma va l=” 0.0052 ”/>
</evaDouble>

[. . . a dd i t i ona l evaDouble ’ s e ra sed . . .]

</ r oo t Ind i v i dua l>
</rootPopulat ion >

Listing A.25: A simple root script
void ph ip i (double � values , int nValues , double � r e s u l t)
{

� r e s u l t =0;
for (int i =0; i<nValues ; i++){

// do some c a l c u l a t i o n
� r e s u l t += va lues [i] � va lues [i] ;

}
}

would also work for the ROOT interpreter

A.6 Copyright

The EVA library is distributed under the terms of the GNU General Public License (GPL).
A copy of this license can be found at [GPL]. The GPL ensures that the EVA library can
be freely copied and modified, as long as modifications of the library are themselves placed
under the GPL. This approach, commonly referred to as Open Source licensing, is in line
with the intention to make the EVA library a leading implementation of Evolutionary
Algorithms. There are numerous examples in the particle physics community where Open
Source software has proven to be superior both in terms of quality and extensibility to
proprietary software. Due to the fact that Open Source software is freely available and its
sources are available to any interested party, bugs are discovered and fixed more quickly
and suggestions for improvements can be included into the software without delay.

A.6 Copyright 107

Listing A.26: The main() function used in conjunction with the evaRootPopulation
#inc l ude ” eva r oo t i nd i v i dua l . hh”
#inc l ude ” evarootpopu la t i on . hh”

#i f d e f USEPTHREAD
#inc l ude ” evapthreadpopu lat ion . hh”
#end i f

#i f d e f USEMPI
#inc l ude ” evampipopulat ion . hh”
#end i f

using namespace std ;

int main (int argc , char � � argv)
{

// Need to prevent POSIX threads from be ing used
#i f d e f USEPTHREAD
cout << ”Error : Attempt to use POSIX threads ! ” << endl ;
exit (1) ;
#end i f

#i f d e f USEMPI
evaMPIPopulation<evaRootIndiv idual , evaRootPopulation > rpop (argc , argv) ;
rpop . s e tSendPo l i cy (DISTRIBUTEWILLING) ;
#end i f

#i f d e f USESERIAL
evaRootPopulation rpop ;
#end i f

// Check t ha t we have a s u f f i c i e n t number o f arguments
i f (argc < 2){

cout << ” Error : bad number o f arguments : ” << argc << endl ;
exit (1) ;

}

// load XML des c r i p t i on o f popu la t ion
xmlDocPtr doc ;
i f ((doc=xmlParseFi le (argv [1]))) {

rpop . loadSimpleXML(doc−>ch i l d r en) ;
cout << ”Loaded XML de s c r i p t i o n ” << endl ;

}
else {

cout << ” Error : could not load XML de s c r i p t i o n ” << argv [1] < < endl ;
exit (1) ;

}

rpop . opt imize () ;

exit (SUCCESS) ;
}

108 Using the EVA library

Appendix B

Using Neural Networks to Optimize
Significance

Feed-forward neural networks can be used to find an ideal cut separating two or more event
classes. Section A.4.4 gives an example, where a feed-forward network was trained using
the EVA library1 to distinguish between two event classes, the first distributed along the x-
and y- axis, the second distributed evenly over the whole range of the training data. As the
value range of both data sets overlaps and the density of the first data set is not constant
over the whole area, a non-linear cut had to be found, separating the two datasets with a
minimum of mis-identification of input vectors. As shown in figure A.6, the smallest useful
network featuring two input nodes for the x- and y- values, two nodes in the hidden layer
and one output node is already able to perform a good separation of both event classes2.

This remarkable ability of feed-forward networks has in the past also been used successfully
in scientific analyses in particle physics. Due to a neural networks ability to exploit possible
correlations between input parameters it is often possible to achieve better results than
when using orthogonal cuts.

The biggest drawback of feed-forward neural networks, however, is at the same time one of
the biggest advantages of parametric optimization methods based on Evolutionary Strate-
gies as presented in chapter 5. In supervised training a neural network is given examples
of the event classes to be distinguished as input vectors, and the weight set of the network
is adapted in a way that the output nodes of the network return the desired value. A
clear knowledge of the characteristics of the input data is thus required during the training
phase, and in particle physics this can usually only be done using Monte Carlo events.
Optimization of significance based on Evolutionary Strategies, on the other hand, requires
but little knowledge about the underlying data set. It can indeed be necessary to cal-

1As opposed to the standard Back-propagation algorithm that is usually used to train feed-forward
networks. Please note that a network trained using the EVA library is in no way different from a network
trained using the standard algorithm

2Please note that due to the overlap it is impossible to completely separate both event classes

110 Using Neural Networks to Optimize Significance

culate the background from Monte Carlo data. Combinatorial background, however, can
usually be simulated with high accuracy, as no clear knowledge of underlying physical de-
cay processes3 is necessary. A big drawback of parametric optimization with Evolutionary
Strategies, however, is that this method doesn’t exploit correlations between cut variables.

No clear advice can be given where Neural Networks will perform better than the algorithm
presented in chapter 5. The choice, however, will clearly depend on the question, how big
a systematic error one will incur by having to use Monte Carlo events for training. As
particle decays that can only be reconstructed with relatively low statistics are expected to
be more vulnerable to the creation of fake peaks (see section 5.2.4) during the optimization
of significance using Evolutionary Strategies, it is also important to know how big the data
set of reconstructed events is that is used for the optimization.

Unsupervised Training

It appears possible to combine the advantages of feed-forward neural networks with Evo-
lutionary Strategies. The problem of having to use a set of training data with known
characteristics could be avoided by using the significance resulting from a given weight set
of a network as its figure of merit. This unsupervised training technique would then be
able to exploit correlations of input variables while not having to rely on Monte Carlo data
for training.

Training of such a network could no longer be done using the back-propagation algorithm
as it relies on partial derivatives of the network’s error function. Training is however
possible using Evolutionary Strategies, as demonstrated in section A.4.4 and also discussed
in [RBNN95].

The approach has been tested as part of this thesis. While it still appears to be a workable
method, it has turned out that the biggest challenge lies in the determination of good
starting values for the weight set. A very large number of training cycles is therefore
necessary to reach a satisfactory result. Please also keep in mind that the determination of
the quality of each weight set requires processing large amounts of data. So this approach
seems to be problematic.

3such as lifetime and decay channels

Bibliography

[AMOEBA] The Amoeba home page
http://www.cs.vu.nl/pub/amoeba/amoeba.html

[AUBERT1] B. Aubert et al., Phys. Rev. Lett. 86(2001)2515-2522

[AUBERT2] B. Aubert et al., Observation of a Narrow Meson Decaying to D+
s π

0 at a Mass
of 2.32 GeV/c2

BABAR–PUB–03/011; SLAC–PUB–9711

[BABARCP] CP violation “primer” (BABAR)
http://www.slac.stanford.edu/pubs/confproc/babar504/babar504-001.html

[BEOWULF] The Beowulf home page
http://www.beowulf.org

[BOCK98] http://rd11.web.cern.ch/RD11/rkb/PH14pp/node39.html
A description of Dalitz plots

[BRANDT92] Datenanalyse
Siegmund Brandt
ISBN 3-411-03200-6

[CACTUS] Homepage of the Cactus Grid middleware
http://www.cactuscode.org/

[CARL96] http://computer.org/computer/timeline/
A timeline of computing history

[DAL53] R.H. Dalitz, On the analysis of τ -meson data and the nature of the τ -meson,
Phil. Mag. 44 (1953) 1068

[DIRC] I. Adam et al., Nucl. Instr. and Methods A 453 301 (2000); I. Adam et al., Nucl.
Phys. Proc. Suppl. 93 340 (2001).

[EAFAQ] http://www.faqs.org/faqs/ai-faq/genetic/part1
The Hitch-Hiker’s Guide to Evolutionary Computation

112 BIBLIOGRAPHY

[EDG] Homepage of the European Data Grid initiative
http://eu-datagrid.web.cern.ch/eu-datagrid/

[EGEE] Homepage of the EGEE initiative, the successor to the European Datagrid [EDG]:
“Enabling Grids for E-science and industry in Europe”
http://egee-ei.web.cern.ch/egee-ei/2003/index.html

[FOST99] Ian Foster and Karl Kesselman
The Grid - Blueprint for a New Computing Infrastructure
Morgan Kaufmann, ISBN 1-55860-475-8

[GANJ02] Sergey Ganjour
Study of B → D(∗)+

s X and B → D(∗)+
s D∗− Decays with the BABAR Decector

Dissertation, Ruhr-Universität Bochum, March 2002

[GLOBUS] Homepage of Globus middleware
http://www.globus.org

[GOETZ03] Klaus Götzen
Untersuchung des Zerfalls D±

s → K+K−π+π−π±

Dissertation, Lehrstuhl für Experimentalphysik I, Ruhr-Universität Bochum
Bochum, August 2003

[GPL] The Gnu General Public License
http://www.gnu.org/licenses/gpl.html

[GRIDKA] Homepage of the GridKa Grid Computing Centre at Forschungszentrum Karl-
sruhe
http://grid.fzk.de/

[HOLL75] John Holland
Adaptation in Natural and Artificial Systems
MIT Press, ISBN 0262581116 (reprint)

[IMPA98] John Impagliazzo et. al.
History in the Computing Curriculum

[KOPF02] Bertram Kopf
Untersuchung der photoinduzierten Reaktionen γp→ pπ0π0 und γp→ pπ0η an einem
Flüssig-Wasserstoff-Target
Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften
Dresden, Mai 2002

[KOPF03] Private communication with Bertram Kopf about the feasibility of using Evo-
lutionary Strategies in a Dalitz plot analyses.

BIBLIOGRAPHY 113

[LCG] Homepage of the LHC Computing Grid
http://lcg.web.cern.ch/LCG/

[LEGION] Homepage of the Legion middleware
http://citeseer.nj.nec.com/459307.html

[LGPL] The Gnu Lesser General Public License
http://www.gnu.org/licenses/lgpl.html

[LHCBCP] Explanation of CP violation on the LHC-b web page
http://lhcb-public.web.cern.ch/lhcb-public/html/introduction.htm

[LUED95] Jörg Lüdemann
Beobachtung von Resonanzen in der Proton-Antiproton-Annihiliation im Fluge in drei
pseudoskalare Mesonen
Dissertation im Fachbereich Experimentalphysik I der Ruhr-Universität Bochum
Oktober 1995

[MAT98] M. Matsumoto and T. Nishimura
Mersenne Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator
ACM Transactions on Modeling and Computer Simulation
Vol. 8, No. 1, January 1998, pp 3-30.

[MFM] Simulation and measurement of the fringe field of the 1.5 T BABAR solenoid, E.
Antokhin et al., Nucl. Instr. and Methods A 432, 24 (1999)

[MOSIX] The Mosix home page
http://www.mosix.org

[MPICH] The MPICH home page
http://www-unix.mcs.anl.gov/mpi/mpich/

[MPICH-G2] The MPICH-G2 home page
http://www.hpclab.niu.edu/mpi/

[PACX] The PACX home page
http://www.hlrs.de/organization/pds/projects/pacx-mpi/

[PELI02] Marc Pelizäus
Nachweis und Untersuchung der Reaktion D±

s → π+π−π+π−π±

Diplomarbeit, Lehrstuhl für Experimentalphysik I, Ruhr-Universität Bochum
April 2002

[PVM] The PVM home page
http://www.csm.ornl.gov/pvm/pvm home.html

114 BIBLIOGRAPHY

[PF96] Physical Review D, Particles and Fields, Part I
The American Physical Society
American Institute of Physics
ISSN 0556-2821

[RBNN95] Rüdiger Berlich
Training Feedforward Neural Networks using Evolutionary Strategies
Proceedings of AIHENP95, pp. 521ff.
World Scientific, ISBN 9810224362

[RBDP95] Rüdiger Berlich
Visualisierung hadronischer Splitoffs und ihre Erkennung
mit neuronalen Netzen
Diploma Thesis, Physics
Ruhr-Universität Bochum, 1995

[RBLU01] Roots of a Revolution - Linux history
Rüdiger Berlich
Linux User UK Magazine, March and April 2001

[RECH73] Ingo Rechenberg
Evolutionsstrategie
Friedrich Frommann Verlag, Stuttgart 1973

[RECH94] Ingo Rechenberg
Evolutionsstrategie ’94
Frommann-Holzboog Verlag, ISBN 3-7728-1642-8

[ROB98] Studying CP Violation with the BABAR Detector at SLAC
http://hep.ucsb.edu/people/roberts/Colloqium/sld001.htm

[ROOT] The ROOT Object Oriented Analysis Framework
http://root.cern.ch .

[SCHO93] Eberhard Schöneburg, Frank Heinzmann, Sven Feddersen
Genetische Algorithmen und Evolutionsstrategien
Addison Wesley, ISBN 3-89319-493-2

[SPAN98] High-statics Dalitz plots created by members of the Crystal Barrel collaboration
http://www.phys.cmu.edu/cb/dalitz plot.html

[SUNGRID] Homepage of the SUN Grid engine
http://gridengine.sunsource.net/

[SVT] The BABAR Silicon Vertex Tracker, C. Bozzi et al., Nucl. Instr. and Meth-
ods A 435, 25 (1999)

[TAN03] Andrew S. Tanenbaum, Marten van Steen
Verteilte Systeme - Grundlagen und Paradigmen
Prentice Hall, ISBN 3-8273-7057-4

[UNICORE] Homepage of the Unicore Grid inter-connection framework
http://www.unicore.org/

List of Figures

2.1 Definitions for a particle signal and background in a histogram. The number
of entries N in a particle signal can be calculated with the help of the number
of background events B0 below the peak. An estimate for B0 can be calculated
from the number of entries in the sidebands, if the background is flat. . . . 7

2.2 Squared Significance vs. Signal-to-noise ratio “Rsn” during an optimization
with Rsn as a measure of the quality of a Ds peak. The small triangles stand
for each solution that was investigated. Maximizing Rsn leads to signals with
a small number of entries and low significance (see text). Rsn can thus not
be considered to be a suitable quality measure in parametric optimization
studies. 10

2.3 A Dalitz plot representing the decay pp̄ → π0π0η. The plot uses measured
data from the Crystal Barrel experiment at LEAR/CERN, a predecessor of
the CB/ELSA experiment being discussed in chapter 6. Due to energy- and
momentum conservation not all areas of the plot are populated with events.
Clear structures in the Dalitz plot indicate the presence of resonances. They
are labelled in the plot. See the text for further information on Dalitz plots.
(Courtesy Spanier / Meyer [SPAN98]). 11

3.1 Schematic overview of Evolutionary Algorithms. The duplication of parent
individuals, possibly including a recombination of two or more parents (ex-
ample “P1+P2”), is followed by the mutation of child individuals and the
selection of the best individual(s) as new parent(s). This procedure forms
the basis of both Evolutionary Strategies and Genetic Algorithms. 17

3.2 In the context of Evolutionary Algorithms an individual is represented by a
“feature” vector. In the case of Evolutionary Strategies this vector contains
floating point values. Individuals being used in a Genetic Algorithm contain
bits. The content of part of each feature vector is exchanged in a cross-over
procedure between two individuals. Cross-over is more common in Genetic
Algorithms, but can also be used in Evolutionary Strategies. 18

3.3 A basic form of Evolutionary Strategies can be demonstrated on the example
of a two-dimensional parabola. “Children” are scattered around a parent in-
dividual. The density of child individuals increases with decreasing distance
to the parent. The best child of a generation is chosen according to its fit-
ness (i.e. the function value of the parabola at the location of the child) and
becomes a new parent. The procedure starts again. 19

4.1 The most important classes of the EVA library. Every C++ class that can be
stored in one of EVA’s population classes inhertits features from evaMember.
An evaIndividual is a “member” class that can contain “value classes” like
evaDouble. Population classes inherit many features from evaIndividual,
thus enabling them to be stored in a population themselves and to compete
with each other. 29

4.2 Gaps and boundaries in the value range of a floating point variable are
achieved by a transformation from an internal to a user-visible value in
the evaDouble class. All mutations known to evaDouble are applied to the
internal representation rather than the user-visible value. This helps to re-
duce code-complexity while retaining the ability to use an arbitrary amount
of gaps and open or closed boundaries. 34

4.3 The progress of ES populations of different sizes is shown as a function
of generations. The size of a population influences the success rate. A
“1+49”population (1 parent, 49 children) achieves better results than a 1+4
strategy. Only little improvement is visible when going from 50 to 100 mem-
bers. The ideal size of a population depends on the optimization problem. . 39

4.4 Time needed for the optimization of a multi-population as a function of the
number of generations in each child population. Multi-threaded execution
and execution on a cluster using the Message Passing interface (MPI) clearly
outperform sequential execution. 40

4.5 Execution via MPI results in a certain overhead due to the need to parse and
generate XML descriptions of population members. Please note that this is
an extreme example, as the XML description of a whole population, as is
used in multi-populations, can be several megabytes in size. Furthermore, as
is shown in 4.4, the slope of the MPI curve is much lower than for sequential
execution. 41

4.6 The speedup (multiples of sequential execution) is shown for a population
with one parent and two child individuals in an idealized situation (see text)
for MPI and POSIX threads as a function of the length of the calculation
done by each individual in parallel in each generation. It is visible that the
theoretical maximum of 2 is reached within short time. 42

4.7 The ping command sends a signal to another computer in a network and
measures the time until the signal is returned by the remote host. This time
is a measure of the latency in a network. Latencies in LANs are much lower
than in WANs. Latency thus is one of the most important limiting factors
for parallel execution over a wide-area network. 43

4.8 Running an Evolutionary Strategy with 1 parent and 128 child individual in
parallel on between 2 and 129 compute nodes exhibits a significant speedup.
The execution time is reduced from 5 hours, 42 minutes to below 3 minutes.
The “stairs” are a consequence of the fact that a speedup can only occur if
the maximum number of individuals per compute node is decreased. 44

4.9 A test function with a large number of local optima can be used to demon-
strate the remarkable ability of Evolutionary Strategies to find global minima
even in very complicated cases. The one-dimensional function is shown for
demonstration purposes – the test was conducted using a two-dimensional
version (see figures 4.10 and 4.11) . 45

4.10 The plot shows all coordinates tested by EVA in the search for the global min-
imum of equation 4.5. A small step width of 1.0 was used. Both evaDouble

objects of the evaIndividual class used in this case were restricted in their
value range to values below 100. It is visible that the Evolutionary Strategy
was able to find the global optimum at (0, 0) quickly and on a direct way. In
comparison, a gradient descent would easily get stuck in a local minima. . . 46

4.11 The same optimization was performed as in figure 4.10, but with a much
larger step width. It can be seen that the algorithm converges more quickly
and that the search path is wider. The algorithm nevertheless has problems
to find the global optimum and “hovers” around (0, 0) due to the step width
being too large. This happens despite the dynamic adaptation of the step
width (see text). Choosing an appropriate step width is thus an important
task. 46

5.1 BABAR , PEP-II and the Linear Accelerator for Electrons and Positrons at
SLAC. Electrons reach 9,0 GeV in the PEP-II synchrotron, positrons have
an energy of 3,1 GeV , resulting in a center of mass energy of 10,58 GeV
at the collision point. This is also the energy of the Υ (4S), a bb̄ resonance
only insignificantly above the energy threshold needed for the production of
BB̄ pairs. 48

5.2 The BABAR detector and its subsystems : (1) vertex detector, (2) drift
chamber, (3) Cherenkov detector with (a) read-out (b) quartz crystals, (4)
calorimeter with (a) barrel (b) end-cap, (5) superconducting coil and (6)
instrumented flux return . 49

5.3 Invariant mass distribution for the reconstruction of the D+
s → Φπ+ de-

cay (right peak). The plot was created using measured data taken at the
BABAR experiment and uses the cuts specified in [GANJ02]. The left peak
stems from the Cabibbo-suppressed decay mode D+ → φπ+. 55

5.4 a) The plot shows all tested solutions during an optimization of the recon-
struction of the decay D+

s → Φπ+ in the S2 vs. Rsn plane. S2 was used
as a figure of merit in this optimization. The best solution found in each
generation is shown as a star. Stars with a higher S2 were found later in
the optimization than those with a lower S2. Solutions with a higher Rsn

as well as a higher S2 were found during the optimization. The final result
exhibited a 19.4% higher S2 (of 3766, 03) compared to the start values (with
S2 = 3154, 27). Given the large number of tested solutions it also becomes
clear that parallelisation of the optimization procedure will return results
quicker. b) S2 is shown as a function of the generation of the Evolutionary
Strategy. The most progress is achieved during the first 25 generations. . . 57

5.5 a) The plot shows the reconstructed D+
s → Φπ+ (right peak) before and after

the optimization with S2 used as a figure of merit. It is visible that the
procedure has led to a higher number of entries in the histogram. b) The
ratio of both histograms is shown. The “dip” in the D+

s region shows that a
higher S2 could be achieved despite a lower signal-to-noise ratio. 58

5.6 a) The plot shows the reconstructed D+
s → K̄∗0K+ decay (right peak) before

and after the optimization. A higher S2 was achieved by a reduction of the
overall statistic in combination with a higher signal-to-noise ratio, as can
be seen from the ratio of the original and optimized histogram (b). S2 is
increased by 45% when using the optimized cuts. 59

5.7 a) The plot shows the reconstructed D+
s → K̄0K+ (right peak) before and

after optimization. Like in the case of figure 5.6 the increase of S2 was
achieved by a reduction of the overall statistic in combination with a higher
signal-to-noise ratio, as can be seen from (b). S2 is increased by 16.3% when
using the optimized cuts. 60

5.8 A “fake” peak was created between the D and Ds peaks by “optimizing” the
squared significance in an area where no physical peak is present. Both the
histogram resulting from the original cuts and the one using the “optimized”
cuts are shown. It can be seen that the fake peak is really just a random
fluctuation already present in the original plot. It got more significant by a
reduction of entries in the two sidebands, 61

5.9 The application of the cuts used to generate the fake peak in figure 5.8 to a
different dataset shows no sign of a fake peak. This again underlines that
fake peaks are the result of random fluctuations present in the data used for
the optimization. 62

5.10 S2 is shown for a fake peak (compare fig. 5.8) and the original cuts as a
function of the amount of input data (measured in “number of input files”).
The creation of a fake peak in between the D and the Ds peak was – with
varying degrees of success – possible in all cases. Nevertheless S2 is in each
case small compared to the Ds peak (S2 (Ds) = 3154 for the unoptimized peak). 63

5.11 In order to test the stability of S2, a set of cuts resulting from the opti-
mization of the reconstruction of the decay D+

s → φπ+ was applied to four
different datasets of equal size. The third dataset was used for the optimiza-
tion. The values agree well within their error-bounds. 64

6.1 Overview of the CB/ELSA experiment . 66

6.2 Cross section of the CB/ELSA detector system. (1) liquid hydrogen target;
(2) inner detector; (3) photo-multipliers needed for the read-out of the inner
detector; (4) CsI(Tl) calorimeter with 1380 segments; (5) provision of liquid
hydrogen for the target. 67

6.3 Dalitz plots for the reaction pγ → pπ0η are shown in the case of measured
data (a) and for the fit of phase-space distributed Monte Carlo events to this
data (b). m2

pη is in both cases plotted against m2
π0η. Resonances are indicated

by dotted lines. 69

6.4 Like in the case of figure 6.3, Dalitz plots for the reaction pγ → pπ0η are
shown in the case of measured data (a) and for the fit of phase-space dis-
tributed Monte Carlo events to this data (b). m2

pπ0 is plotted against m2
π0η.

Resonances are indicated by dotted lines. 70

6.5 a) The plot shows the projection of Dalitz plot 6.3a on the pη mass scale (grey
histogram). Plotted on top of it is the projection of the corresponding MC
Dalitz plot (histogram with error bars). Both histograms agree well within
the error boundaries. b) shows the ratio of both histograms. 71

6.6 a) The plot shows the projection of Dalitz plot 6.4a on the π0η mass scale
(grey histogram). Plotted on top of it is the projection of the corresponding
MC Dalitz plot (histogram with error bars). Both histograms agree well
within the error boundaries, especially in the signal region of the a0 and a2.
b) shows the ratio of both histograms. 72

6.7 a) The plot shows the projection of Dalitz plot 6.4a on the pπ0 mass scale
(grey histogram). Plotted on top of it is the projection of the corresponding
MC Dalitz plot (histogram with error bars). Again both histograms agree
well within the error boundaries. b) shows the ratio of both histograms. . . 73

6.8 The plot shows four different optimization runs in a Dalitz plot analysis.
The quality of the fit is shown as a function of the time needed. Sequen-
tial execution of Evolutionary Strategies (circles) is slowest, followed by the
gradient descent with TMinuit (curve with “steps”). Execution of 30 clients
on 15 CPUs is fastest. All four optimization runs achieve almost identical
results. 74

A.1 The plot shows a function with a singularity at 0 and a minimum close
to −1.3, left of the singularity. Minimization startes on the right side of
the singularity. The function is designed to demonstrate the Evolutionary
Strategies remarkable ability to bybass even the most cumbersome local optima. 86

A.2 Function A.1 was fitted to gaussian random numbers with two different sets
of mean/sigma (0./0.5 and 6./2.). Their values, as reproduced by the fit,
are shown in the picture. 100

A.3 The internal, continuous representation of an evaDouble is mapped to the
external representation, whose value range is limited to [−0.5 : 1.5]. 102

A.4 Two gaps were added to the value range of picture A.3. Gaps are reflected
as a different transfer function mappingthe internal to the external repre-
sentation of an evaDouble. 103

A.5 The class hierarchy used in libFfn. The library is built on top of the EVA
framework. 104

A.6 Input pattern used to train a 2-2-1 network (an even distribution of input
values and a distribution confined to the x- and y-axis) and the output of the
network after the training (numbers). 105

Curriculum Vitae
Persönliche Daten

Name Rüdiger Berlich

Geboren Am 21.01.1968 in Wuppertal

Familienverh. ledig

Staatsangeh. deutsch

Adresse Friedrich-Naumann Str. 109
76187 Karlsruhe

E Mail ruediger@berlich.de

Berufserfahrung

seit 8/2001 Doktorarbeit an der Ruhr-Universität Bochum

8/1999–7/2001 SuSE Linux Ltd, London; Aufbau und Leitung der britischen Tochterfirma
der SuSE Linux AG als Managing Director

2/1999–7/1999 SuSE Inc., Oakland/USA; Aufbau und Leitung einer Supportabteilung für
englischsprachige Kunden als Technical Manager Support

2/1998–1/1999 SuSE Linux GmbH, Nürnberg

5/1995–1/1998 Max-Planck-Institut für Hochenergiephysik, München; Mitarbeit am Aleph
Experiment am LEP (CERN/Genf)

Studium

10/1987–4/1995 Studium der Physik an der Ruhr-Universität Bochum

Diplomarbeit zum Thema “Visualisierung hadronischer Splitoffs und ihre
Erkennung mit Neuronalen Netzwerken”. Abschluss von Vordiplom und
Diplom mit der Note “sehr gut”.

Schulbildung

1974–1987 Grundschule und Gymnasium in Wuppertal

Leistungskurse Englisch und Französisch

Abschluss Abitur

Thank You !

I would like to take the opportunity to say a big “Thank you” to all who have
contributed to the success of this work. While writing this text I’ve found that there are
more peope that I like than that I dislike – which, I guess, is fortunate. It wasn’t easy
to select the people I want to mention here – I hope I have succeeded in listing the right
ones.

First and foremost, I would like to thank the two people who have initiated this thesis -
Prof. Dr. H. Koch and Dr. Marcel Kunze. Their big interest in the ongoing work, their
advice and patience were key to its success ! Similarly, Dr. Klaus Peters, Dr. Matthias
Steinke, Dr. Bertram Kopf, Dr. Bernd Lewandowsky and Dr. Andrea Wilms were always
available for my questions, I’d like to sincerely thank them. All members of EP1 have in
one way or another contributed to this work. Thanks to y’all, mates !

The colleagues at Forschungszentrum Karlsruhe have provided me with an exciting work
environment. I’d especially like to thank Klaus-Peter Mickel, Dr. Holger Marten and all
members of GES and GIS for the opportunity to participate in the exciting field of Grid
computing.

Marcus Hardt and Jos van Wezel: thanks for the whisky. You do know that my first large
C++ program was named Jhonny Walker, don’t you ?

A very big “Thank You” goes to Ms. Ursula Epting. She is a constant source of inspiration
and is always willing to issue another Globus certificate. Have fun ! :-)

Also, Andrea Ballouk and Annette von Czarnowski, despite sometimes being far away, will
always remain close to my heart.

Ms. Edith Borie has given me a home away from home.

Horst, who runs the Katzenstube cafe in Bochum, has become a friend over the years.

A big “hi” goes across to the UK to all my former colleagues at SuSE Linux Ltd., but
especially to Jasmin Ul-Haque, Sally Donohoe, Roger Whittaker, Justin Davies and Khalid
Sanad.

I would like to thank Inge and Jens Hanten, who are part of the family.

Next, I want to thank my brother Peter Berlich for constant support and more SMS than
I can count. Keep in mind : “Mut zum Komma” . . . :-)

Finally, I would like to dedicate this work to my mother Hanna Berlich, who died
in 1982, to my father Karl Berlich, and to my aunt Hildegard Heinzerling.

