Polarised Nucleon Targets for Europe, 2nd meeting, Bochum 2005

Temperature dependence of nuclear spin-lattice relaxations in liquid ethanol with dissolved TEMPO radicals

> H. Štěpánková, J. Englich, J. Kohout, M. Pfeffer J.Černá, V.Chlan, V.Procházka E. Bunyatova*

Faculty of Mathematics and Physics, Charles University Prague, Czech Rep. * Joint Institute for Nuclear Research Dubna, Russia

- Introduction, NMR in ethanol
- Experimental results (spectra and relaxations)
- Summary

Introduction						
Proton/neutron target materials						
alcohols + stable nitroxyl radicals						
criteria:	polarization as high as possible x					
relaxation rate as long as possible						
technical requirements (<i>T</i> , <i>B</i> , chemical stability)						
	Current study ethanol + TEMPO	с н 3 с н 3				
NMR spectra and spin-lattice relaxation in the liquid state						
System is interesting from the point of view of hydrogen bonding						
(molecular structure and dynamics of water and simple alcohols)						

Introduction				
High resolution NMR in liquids				
¹ H spectra				
¹³ C spectra				
Chemical shift - different resonant frequencies from nuclei in				
nonequivalent positions in a molecule due to the different				
shielding of external field by electrons				
<u>J-coupling</u> - splits lines into multiplets due to the neighbour				
nuclei coupled via chemical bonds				
Direct dipol-dipol interaction between nuclei - not seen in				
the spectra of liquids (averaged to zero)				
<u>Linewidth</u> (homogeneous)~ $1/T_2$				
Chemical exchange - may broaden the lines or reduce the				
number of lines				
Paramagnetic atom in the neighbourhood may cause a shift				
due to the contact Fermi interaction (dipolar interaction in				
iquids is averaged to zero)				

Introduction

High resolution NMR in liquids

 $\label{eq:approx} \begin{array}{l} \textit{Various relaxation mechanisms} \\ \textit{Diamagnetic samples: direct dipolar interactions} \\ \textit{Relaxation due to electron spin: dipolar interaction} \\ \textit{Relaxation due to electron spin: dipolar interaction} \\ \textit{Fermi contact interaction} \\ \textit{Fermi contact interaction} \\ \textit{Electron relaxation seen by nucleus - electronic correlation time τ_s} \\ \textit{Various kinds of atomic and molecular motion:} \\ \textit{rotation (τ_r) - modulates dipolar relaxation} \\ \textit{translational diffusion (τ_t) - no adduct formation - modifies} \\ \textit{both contact and dipolar relaxation, non Lorentzian J } \\ \textit{chemical exchange (τ_m) - mean time for the adduct of the } \\ \textit{two chemical moieties} \\ \textit{Anisotropic motion. Internal motions.} \\ \textit{Concentration, temperature, field dependences} \end{array}$

Introduction

High resolution NMR in ethanol CH₃CH₂OH

Hydrogen bonds, donor/accepor

Formation of clusters (linear/cyclic) similarly as in water, but more simple (not the extended 3D clusters common to water), lifetime of the O-H covalent bond (and probably also the hydrogen bond) is relatively long

Experimental						
NMR BRUKER AVANCE 500 spectrometer						
l	$B_{external} = 11.7 \text{ T}$ (500 MHz for ¹ H, 125 MHz for ¹³ C)					
Ethanol absolute for analysis, >99.9%, FM 46.07, Merck						
TEMPO = 2,2,6,6 tetramethylpiperidin-1-yloxy,						
98%,FM156.25, Aldrich						
degassed samples, sealed, Ar atmosphere						
				0		
	Sample	IEMPO (wt%)	H2O (mol %)			
	#0/2	0	0.3			
	#1/2	0.0050	0.2			
	#2/2	0.050	2.6			
	#5/2	0.170	2.3			
	#3/2	0.50	0.2			
	#4/2	1.50	3.9			
	(0.5 wt% of TEMPO~ 25mM)					

