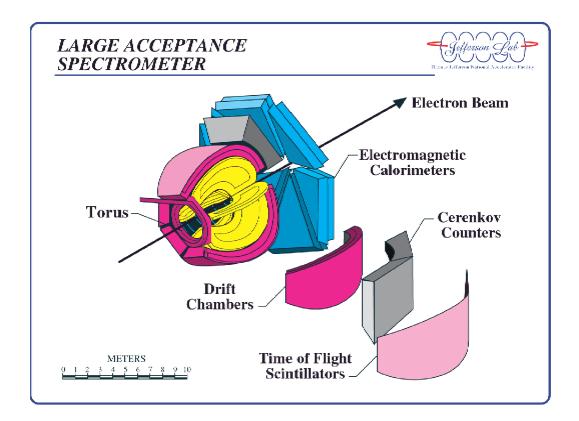

Development of a Frozen Spin Target for $$\operatorname{CLAS}$$


Chris Keith Target Group Jefferson Lab

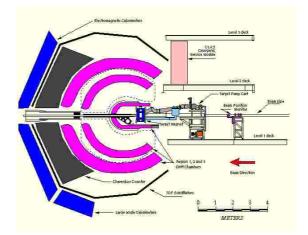
> June 4, 2005 Miltenberg

Jefferson Lab Milestones

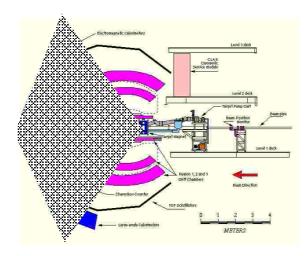
- 1976 CEBAF proposed1983 DOE awards contract to SURA
- 1987 Groundbreaking for accelerator
- 1993 1st Experiments commence
- 1996 Name changed to Th. Jefferson Nat'l Accelerator Facility
- 1997 5-pass beam (4 GeV) simultaeously delivered to all 3 Halls2000 6 GeV enhanced design goal met

The Conventional Hall B Polarized Target

Protons (and deuterons) in $^{15}\rm NH_3$ ($^{15}\rm ND_3)$ are **continuously** polarized by 140 GHz microwaves at 5 Tesla, 1 Kelvin


Used for several experiments (beam current \sim 3 nA) over a 10 month period during 1999, and 2000-2001

Proton polarization: ${\sim}75$ - 85% Deuteron polarization: ${\sim}25$ - 35%



The Current Hall B Polarized Target

The Current Hall B Polarized Target

Problem: We have a " 4π " detector. We need a " 4π " target!

Frozen Spin Polarized Targets

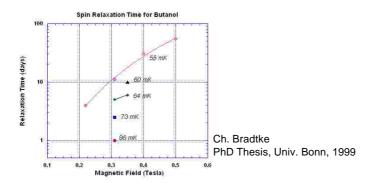
Two steps

1. Polarize target material (NH_3 , C_4H_9OH , ⁶LiD, ...) at high field (2.5 – 5.0 T) and moderate temperature (.2 - .4 K)

2. Reduce target temperature to ~ 50 mK, and hold polarization with reduced field (0.3 – 0.5 T)

The target polarization then decays exponentially during the data acquisition phase of the experiment.

The target must be re-polarized (step 1) every few days.



Specifications for the Hall B Frozen Spin Target

Beam: Tagged photons Target: $\emptyset 15 \text{ mm} \times 50 \text{ mm}$ butanol (C₄H₉OH) Polarizing Magnet: 5 Tesla warm bore solenoid Holding Magnet: 0.3 - 0.5 Tesla internal solenoid Refrigerator: ³He/⁴He dilution 'fridge

 $L \sim 10^{30} - 10^{31}$ /s cm²

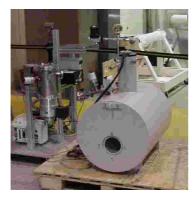
 $Q \sim 20 \text{ mW} @ 0.3 \text{ K}$ $Q \sim 10 \text{ }\mu\text{W} @ 0.05 \text{ K}$

Physics Program with Polarized Target and Tagged Photons

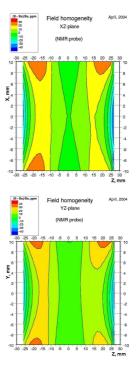
Approved Experiments

E02-112: Missing Resonance Search in Hyperon Photoproduction

E01-104: Helicity Structure of Pion Photoproduction


E03-105: Pion Photoproduction from a Polarized Target

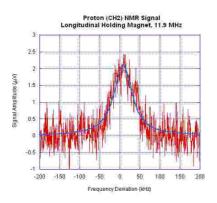
Letter of Intent


LOI-020104: Photoproduction Using Polarized Beam and Target

Polarizing Magnet

Max. Field: 5.1 T $\Delta B/B$: $< 3 \times 10^{-5}$ Bore: Ø127 mm

Cryomagnetics, Inc. Oak Ridge, TN, USA



A. Dzyubak, priv. comm..

Holding Magnet, Longitudinal

Wire: Ø.1 mm multifilament NbTi, three layers Dimensions: Ø 50 × 110 Max. Field: 0.42 Tesla Homogeneity: Δ B/B ~ 3 10⁻³

Holding Magnet, Transverse (Prototype)

Wire: Ø.1 mm multifilament NbTi, three layers Dimensions: Ø 40 × 355 mm Max. Field: 0.27 Tesla Homogeneity: $\Delta B/B \sim 5 \ 10^{-3}$

³He/⁴He Dilution Refrigeration

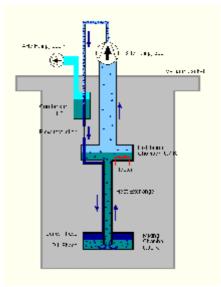
- below 0.8 K, a ${}^{3}\text{He}/{}^{4}\text{He}$ mixture will separate into two phases

- if ³He atoms are removed (distilled) from lower phase ³He atoms from upper phase will cross the phase boundary to reestablish equilibrium

⁻³He will absorb energy when it dissolves into the dilute phase.

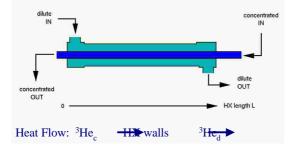
- heat absorbed by n moles is:
$$Q = n [H_d(T_m) - H_c(T_m)]$$

= n [94.5 T² - 12.5 T²] = 82 n T² J/mol K²


Continuous Dilution Refrigeration

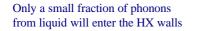
- ³He is "distilled" from the lower, dilute phase of the mixing chamber

- after distillation, the ³He is recondensed in a LHe bath at ~1.5K and returned to mixer at elevated temperature T_c


- the cooling power and min. temperature depend strongly on heat exchange between the conc. (warm) and dil. (cold) fluid streams

$$\dot{Q}(T_m) = \dot{n}[H_d(T_m^2) - H_c(T_c^2)]$$

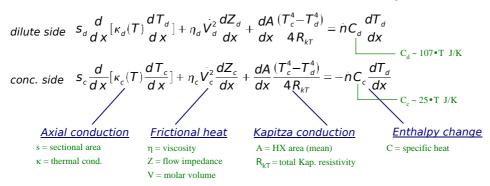
= $\dot{n}[94.5T_m^2 - 12.5T_c^2]$



Performance of HX determines T_c

Heat Exchange between Concentrated and Dilute Phases

At low temperatures, the main impediment to heat transfer is the thermal boundary (Kapitza) resistance R_k between the helium and the HX walls


$$\frac{\rho_1 V_1^3}{\rho_2 V_2^3} \propto 10^{-5} \longrightarrow \dot{Q}_{K} = \frac{A}{2R_{K}} [T_2^4 - T_1^4]$$

Or a more familiar form:

$$\dot{Q}_{\kappa} = \frac{\Delta T}{R} = \frac{AT^3}{R_{\kappa}} \Delta T$$
 Heat transfer drops fast at low T !

Performance of an "Ideal" Heat Exchanger

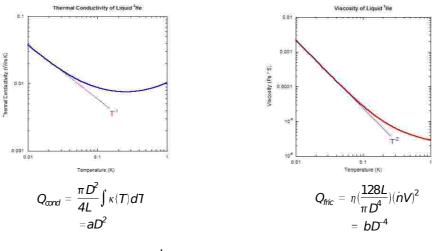
(Giorgio Frossati, 1986)

Frossati: design HX so that 1st and 2nd terms are small compared to the 3rd

$$T_{c}^{2} = \frac{2 \cdot 25}{(1 - (25/107)^{2})} \frac{R_{kT}}{A} \dot{n} \approx 50 \frac{R_{kT}}{A} \dot{n}$$

Temperature of ³He_c entering mixing chamber

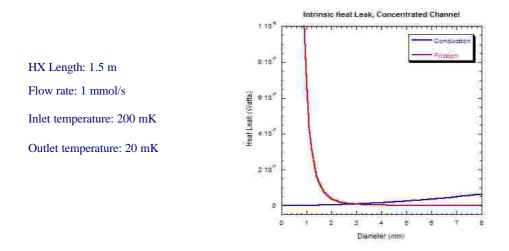
Cooling Power with Ideal Heat Exchanger


(Giorgio Frossati, 1986)

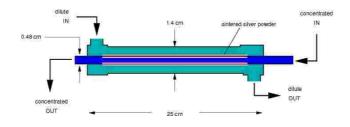
Cooling power, assuming "ideal" heat exchange is determined by molar flow rate and R_{ν}/A of heat exchanger

$$\dot{Q}(T_m) = \dot{n} [94.5T_m^2 - 12.5T_c^2]$$

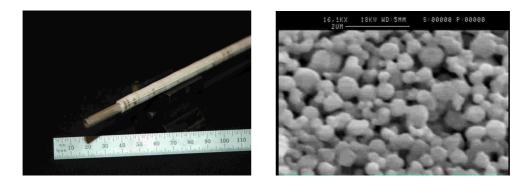
= $\dot{n} [94.5T_m^2 - 625\frac{R_{kT}}{A}\dot{n}]$
Build HX with low R_{kT}
OR, large Area

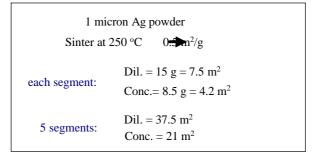

Optimization of Heat Exchanger Geometry

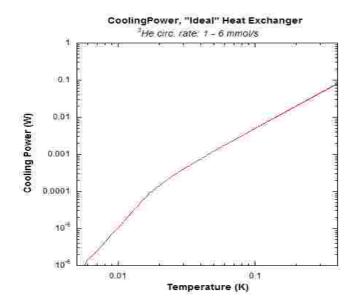
To optimize heat exchangers, must consider heat leaks due to both axial conduction and frictional heating

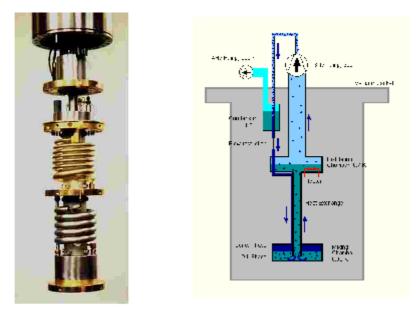

Minimize $Q_{con} + Q_{fric}$: $\frac{d}{dD}(aD^2 + bD^4) = 0 \implies D_{opt} = (2b/a)^{1/6}$

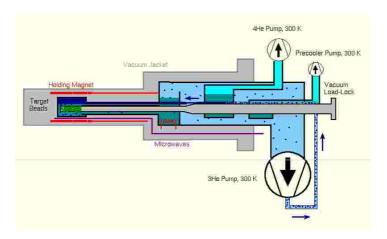
Intrinsic heat leak as a function of tube diameter

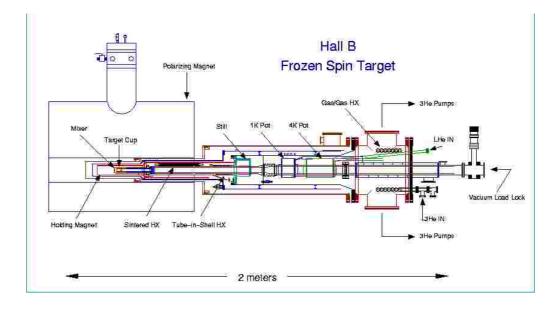



Sintered Silver Heat Exchangers

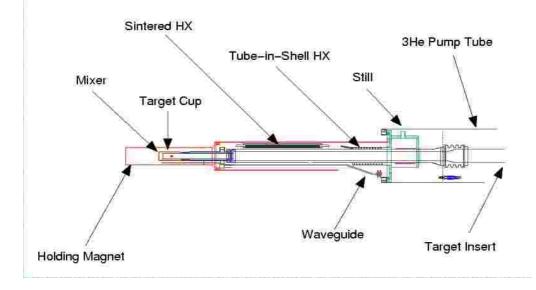

- large surface areas are necessary to overcome Kapitza resistance
- use sinters of ultra-fine silver powder to provide several m^2 of area

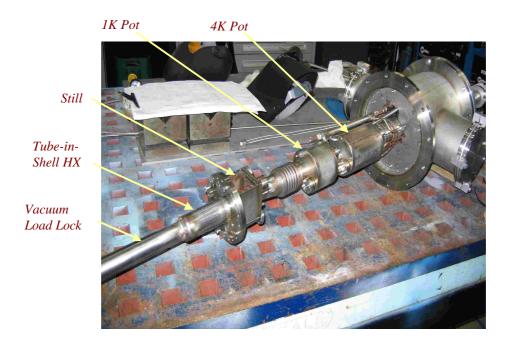

JLab: Use 5 identical segments (in series) between Still and Mixer


An example of a commercial, vertical dilution refrigerator

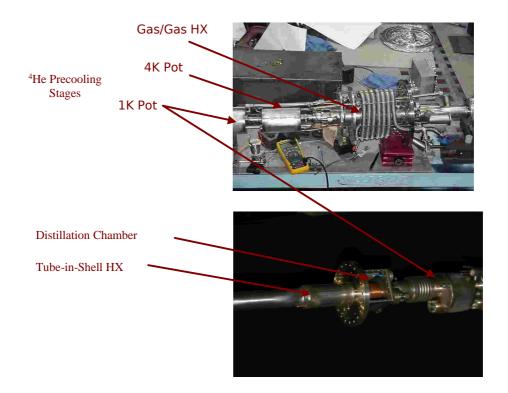


© Leiden Cryogenics, BV

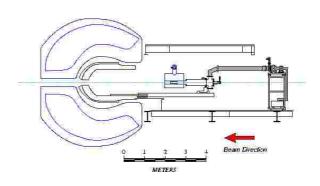

Very nice, but it won't fit inside CLAS...

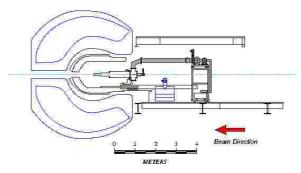

Horizontal Dilution Refrigerator for Frozen Spin Target T.O. Niinikoski, CERN 1971




Dilution Unit

Outer Vacuum Jacket





The Frozen Spin Waltz

Step 1: Polarizing

- Target is fully retracted, magnet is lifted to beam height
- Target is inserted into magnet, magnet energized, microwaves on

Step 2: Beam On

- Microwaves off, magnet off, holding coil on
- Target is fully retracted, magnet is lowered
- -Target is fully inserted into CLAS

Summary

- A frozen spin polarized target for tagged photon experiments is under development at Jefferson Lab.

- 5 Tesla polarizing magnet is in house.
- Superconducting holding coils (~1mm thick) are under development.
 - longitudinal solenoid (0.4 Tesla) constructed and tested
 - prototype of transverse dipole has been tested (0.3 Tesla)
- Horizontal dilution refrigerator is under construction.
- Positioning system for Hall B is still in conceptual design stage.